Effect of lower critical solution temperature phase separation on crystallization kinetics and morphology of poly(butylenes succinate)/ poly(ethylene oxide) blend

Zhiyuan He, Yongri Liang*, Pingli Wang, Charles C. Han

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

20 Citations (Scopus)

Abstract

The crystalline/crystalline polymer blend of poly(butylenes succinate)/poly(ethylene oxide) (PBS/PEO) exhibited lower critical solution temperature (LCST) phase separation behavior at temperatures above the melting point of PBS, which was measured by phase contrast optical microscopy (PCOM) technique. In this work, we determined the LCST phase diagram of PBS/PEO blends, and then investigated the effect of liquid-liquid phase separation (LLPS) on the crystallization kinetics and morphologies of PBS/PEO (40/60 wt/wt) blend. Based on polarized optical microscopy (POM), scanning electron microscopy (SEM) and differential scanning calorimeter (DSC) results, we found that the spherulite morphology and crystallization kinetics of PBS were strongly influenced by the initial LLPS structure; because the kinetics of liquid-liquid phase dissolution was much slower than that of crystallization. The effect of LLPS on the primary nucleation density and crystal growth rate of PBS were strongly dependent on the crystallization temperature of PBS. After a second quench to a temperature below the melting point of PEO, the fractionated crystallization of PEO was observed. The competition between the kinetics of LLPS and the driving force of PBS crystallization controlled the spatial distribution of PEO in PBS spherulites, thus essentially determined the confined conditions of the PEO crystallization. The results indicated that the LLPS was an effective process to control the crystallization kinetics and morphology in crystalline/crystalline polymer blend systems.

Original languageEnglish
Pages (from-to)2355-2363
Number of pages9
JournalPolymer
Volume54
Issue number9
DOIs
Publication statusPublished - 19 Apr 2013
Externally publishedYes

Keywords

  • Crystallization
  • Lower critical solution temperature phase separation
  • Poly(butylenes succinate)/poly(ethylene oxide) blends

Fingerprint

Dive into the research topics of 'Effect of lower critical solution temperature phase separation on crystallization kinetics and morphology of poly(butylenes succinate)/ poly(ethylene oxide) blend'. Together they form a unique fingerprint.

Cite this