Dynamic reconfiguration for en-route airspace

Tong Wang, Zheng Jie Wang*, Ning Jun Fan

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

As the air traffic demand is anticipated to be increased significantly in the near future, dynamic and effective allocation of the airspace resource is becoming a world-wide focus in the research field of air traffic management (ATM). Taking the U.S. targeting the en-route airsapce, a dynamic airspace configuration (DAC) algorithm to reconfigure the airspace in consideration of higher efficiency and safety is presented. First, a modeling technique based on graph theory is proposed to generate a mathematical model for the airspace, and then, the graph model is partitioned into subgraphs for the purpose of sectorizatoin. The final step generates sector configuration with desirable geometry shape. Through analysis on the Cleveland airspace center (ZOB) in the U.S., the algorithm is proved to be robust to time-varying traffic load.

Original languageEnglish
Pages (from-to)445-450
Number of pages6
JournalJournal of Beijing Institute of Technology (English Edition)
Volume20
Issue number4
Publication statusPublished - Dec 2011

Keywords

  • Air traffic management(ATM)
  • Airspace sector
  • Dynamic airspace configuration(DAC)
  • Workload

Fingerprint

Dive into the research topics of 'Dynamic reconfiguration for en-route airspace'. Together they form a unique fingerprint.

Cite this