Dual-function engineering to construct ultra-stable anodes for potassium-ion hybrid capacitors: N, O-doped porous carbon spheres

Shuming Dou, Jie Xu, Chao Yang*, Wei Di Liu, Ingo Manke, Wei Zhou, Xin Peng, Congli Sun, Kangning Zhao, Zhenhua Yan, Yunhua Xu, Qunhui Yuan, Yanan Chen, Renjie Chen

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

34 Citations (Scopus)

Abstract

Heteroatom doping engineering is deemed to be an adoptable strategy to boost the potassium (K) storage performance of carbonaceous materials. The inevitable issue for this strategy lies in the huge volume expansion originated from the large radius of K+. In this study, N/O co-doped porous carbon spheres (PCSs) with high-content –C[dbnd]O are fabricated by a reliable and simple annealing route. Through dual-function engineering for heteroatom doping and pore constructing, the PCSs shows outstanding K+-storage performance with remarkable reversible capacity (389.8 mAh g−1 at 0.1 A g−1), superior rate capability (201.7 mAh g−1 at 1 A g−1), and unprecedented ultralong-term cycling stability (107 mA h g−1 at 5 A g−1 after 40,000 cycles with 0.00038% decay per cycle). In-situ Raman analysis uncovers that the PCSs undergoes a reversible adsorption-intercalation hybrid K+-storage mechanism. Specifically, density functional theory calculations and in-situ transmission electron microscopy observations elucidate the possible origins of the high reversible capacity and superb cycling stability by disentangling the synergistic effect of dual-function engineering. The PCSs can be used as the anode for potassium-ion hybrid capacitors (PIHCs) to deliver a high energy/power density. This work opens a new avenue to construct carbonaceous electrode candidates for high-performance PIHCs.

Original languageEnglish
Article number106903
JournalNano Energy
Volume93
DOIs
Publication statusPublished - Mar 2022

Keywords

  • Anode materials
  • Dual-function engineering
  • In-situ transmission electron microscopy
  • Long cycling stability
  • Potassium-ion storage

Fingerprint

Dive into the research topics of 'Dual-function engineering to construct ultra-stable anodes for potassium-ion hybrid capacitors: N, O-doped porous carbon spheres'. Together they form a unique fingerprint.

Cite this