Directed Self-Assembly of Block Copolymers

Qianqian Wang, Liping Wu, Jing Wang, Liyuan Wang*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)

Abstract

Block Copolymers (BCPs) have been investigated widely in recent years due to their ability of self-assembly in nanoscale and periodical patterns with feature sizes below 10 nm in thin films. Making use of the advantages of self-assembly of block copolymers in thin films, directed self-assembly (DSA) of block copolymers combines the "bottom to top" self-assembly of block copolymers in films and the "up to down" optical lithography or e-beam lithography technologies to prepare guide templates. Morphology diversity of nanostructures such as layer, columnar and holes can be obtained by molecular design of block copolymers. The pattern-wise introduction of chemical heterogeneity on the substrate surface allows the energetic of the polymer-surface interaction to be controlled in a spatially localized way that directs the alignment of block copolymer domains in films. Two main methods of self-assembly considered so far have been the grapho-epitaxy (topographic guiding patterns), which is based on creating pre-pattern on the surface of the template by lithography, and the chemical-epitaxy (chemical guiding patterns), which is based on the surface chemical modification of the template to direct the self-assembly process for instance by grafting a neutral layer material. Consequently, with higher resolution, denser and better ordered nano-patterns can be fabricated by tailoring, surface modification and size-control on micro phase and DSA is becoming one of the most promising advanced lithography technologies.

Original languageEnglish
Pages (from-to)435-442
Number of pages8
JournalProgress in Chemistry
Volume29
Issue number4
DOIs
Publication statusPublished - Apr 2017
Externally publishedYes

Keywords

  • Block copolymer
  • Chemical-epitaxy
  • Directed self-assembly
  • Grapho-epitaxy
  • Photolithography
  • Resolution

Fingerprint

Dive into the research topics of 'Directed Self-Assembly of Block Copolymers'. Together they form a unique fingerprint.

Cite this