TY - JOUR
T1 - Different percentage of acetone-butanol-ethanol (ABE) and diesel blends at low temperature condition in a constant volume chamber
AU - Zhou, Nan
AU - Wu, Han
AU - Lee, Chia Fon
AU - Wang, Qingnian
AU - Huo, Ming
AU - Wang, Pengyu
PY - 2014
Y1 - 2014
N2 - The purpose of this study is to investigate the possibility of acetone-butanol-ethanol (ABE) blended with diesel without further component recovery which has high costs blocking the industrial-scale production of bio-butanol. The combustion characteristics of ABE and diesel blends were studied in a constant volume chamber. In this study, 50% and 80% vol. ABE (without water) were mixed with diesel and the vol. % of acetone, butanol and ethanol were kept at 30%, 60% and 10% respectively. The in-cylinder pressure was recorded using a pressure transducer and the time-resolved natural luminosity was captured by high speed imaging. Combustion visualization using laser diagnostics would provide crucial fundamental information of the fuel's combustion characteristics. With the different percentage of the ABE blended in the diesel, the soot oxidation, the ignition delay and the soot lift-off length were studied in this work. As the increase percentage of the ABE in the blends, the trend for the combustion characteristics is better than the pure diesel (D100). Combing with the low temperature combustion (LTC) and the higher percent ABE in blends, based on the results analysis, it could be found that at low ambient temperature of 800 K, the ABE blends presented close-to-zero soot luminosity with better combustion efficiency. Comparing to D100, the ABE is a very proper alternative fuel to be directly used in diesel engines especially under LTC conditions.
AB - The purpose of this study is to investigate the possibility of acetone-butanol-ethanol (ABE) blended with diesel without further component recovery which has high costs blocking the industrial-scale production of bio-butanol. The combustion characteristics of ABE and diesel blends were studied in a constant volume chamber. In this study, 50% and 80% vol. ABE (without water) were mixed with diesel and the vol. % of acetone, butanol and ethanol were kept at 30%, 60% and 10% respectively. The in-cylinder pressure was recorded using a pressure transducer and the time-resolved natural luminosity was captured by high speed imaging. Combustion visualization using laser diagnostics would provide crucial fundamental information of the fuel's combustion characteristics. With the different percentage of the ABE blended in the diesel, the soot oxidation, the ignition delay and the soot lift-off length were studied in this work. As the increase percentage of the ABE in the blends, the trend for the combustion characteristics is better than the pure diesel (D100). Combing with the low temperature combustion (LTC) and the higher percent ABE in blends, based on the results analysis, it could be found that at low ambient temperature of 800 K, the ABE blends presented close-to-zero soot luminosity with better combustion efficiency. Comparing to D100, the ABE is a very proper alternative fuel to be directly used in diesel engines especially under LTC conditions.
UR - http://www.scopus.com/inward/record.url?scp=84899575881&partnerID=8YFLogxK
U2 - 10.4271/2014-01-1257
DO - 10.4271/2014-01-1257
M3 - Conference article
AN - SCOPUS:84899575881
SN - 0148-7191
VL - 1
JO - SAE Technical Papers
JF - SAE Technical Papers
T2 - SAE 2014 World Congress and Exhibition
Y2 - 8 April 2014 through 10 April 2014
ER -