TY - GEN
T1 - Dictionary learning with mutually reinforcing group-graph structures
AU - Xu, Hongteng
AU - Yu, Licheng
AU - Luo, Dixin
AU - Zha, Hongyuan
AU - Xu, Yi
N1 - Publisher Copyright:
Copyright © 2015, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.
PY - 2015/6/1
Y1 - 2015/6/1
N2 - In this paper, we propose a novel dictionary learning method in the semi-supervised setting by dynamically coupling graph and group structures. To this end, samples are represented by sparse codes inheriting their graph structure while the labeled samples within the same class are represented with group sparsity, sharing the same atoms of the dictionary. Instead of statically combining graph and group structures, we take advantage of them in a mutually reinforcing way - in the dictionary learning phase, we introduce the unlabeled samples into groups by an entropy-based method and then update the corresponding local graph, resulting in a more structured and discriminative dictionary. We analyze the relationship between the two structures and prove the convergence of our proposed method. Focusing on image classification task, we evaluate our approach on several datasets and obtain superior performance compared with the state-of-the-art methods, especially in the case of only a few labeled samples and limited dictionary size.
AB - In this paper, we propose a novel dictionary learning method in the semi-supervised setting by dynamically coupling graph and group structures. To this end, samples are represented by sparse codes inheriting their graph structure while the labeled samples within the same class are represented with group sparsity, sharing the same atoms of the dictionary. Instead of statically combining graph and group structures, we take advantage of them in a mutually reinforcing way - in the dictionary learning phase, we introduce the unlabeled samples into groups by an entropy-based method and then update the corresponding local graph, resulting in a more structured and discriminative dictionary. We analyze the relationship between the two structures and prove the convergence of our proposed method. Focusing on image classification task, we evaluate our approach on several datasets and obtain superior performance compared with the state-of-the-art methods, especially in the case of only a few labeled samples and limited dictionary size.
UR - http://www.scopus.com/inward/record.url?scp=84960158335&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:84960158335
T3 - Proceedings of the National Conference on Artificial Intelligence
SP - 3101
EP - 3107
BT - Proceedings of the 29th AAAI Conference on Artificial Intelligence, AAAI 2015 and the 27th Innovative Applications of Artificial Intelligence Conference, IAAI 2015
PB - AI Access Foundation
T2 - 29th AAAI Conference on Artificial Intelligence, AAAI 2015 and the 27th Innovative Applications of Artificial Intelligence Conference, IAAI 2015
Y2 - 25 January 2015 through 30 January 2015
ER -