Abstract
This paper focuses on the design and test technique of an auxiliary power unit (APU) for a range-extended electric vehicle (RE-EV). The APU system is designed to improve RE-EV power and economy; it integrates the power system, generator system, battery system, and APU controller. The parameters of the APU parts are computed and optimized considering the vehicle power demand and the matching characteristic of the engine and generator. The hardware and software systems are developed for the APU-integrated control system. The APU test bench, combined with the displaying part, the control part, and the bench with its accessory, is constructed. Communication connection in the APU system is established by controller area network (CAN) bus. The APU controller outputs a corresponding signal to the engine control unit (ECU) and motor controller. To verify the rationality of the control strategy and the validity of the control logic, the engine speed control and integrated control experiment of the APU system are completed on the test bench. The test results showed that the test control system is reliable and the relevant control logic is in agreement with simulation analysis. The APU-integrated system could be well suited for application in RE-EVs.
Original language | English |
---|---|
Article number | en11010187 |
Journal | Energies |
Volume | 11 |
Issue number | 1 |
DOIs | |
Publication status | Published - 2018 |
Keywords
- APU controller
- Auxiliary power unit (APU)
- Test bench