Abstract
Imaging systems consisting of flat phase element such as diffractive optical element, holographic optical element, and metasurface have important applications in many fields. However, there is still a lack of generalized and efficient design methods of these systems, especially for systems with nonsymmetric configurations. We proposed a design method of imaging system consisting of flat phase elements based on confocal properties. The description of the generalized phase function for realizing point-to-point stigmatic imaging is derived. Given the focal length or magnification as well as the locations of the elements based on the design requirements, the phase functions can be calculated very fast and stigmatic imaging of the central field is realized. The systems can be taken as good starting points for further optimization, during which the rotationally symmetric or freeform phase terms can be added. Several design examples are demonstrated to validate the feasibility of the method. The proposed method increases design efficiency while decreasing the dependence on existing systems and skills significantly, and can be easily integrated into optical design software.
Original language | English |
---|---|
Pages (from-to) | 45895-45909 |
Number of pages | 15 |
Journal | Optics Express |
Volume | 30 |
Issue number | 25 |
DOIs | |
Publication status | Published - 5 Dec 2022 |