Abstract
The blast behavior and response of thin aluminum plates were investigated experimentally in this article and the results subjected to large-scale explosions in varied masses were presented. A device designed for measuring permanent deformation was used in the tests. Three types of failure were observed. The outcome was that all plates exhibited a counterintuitive behavior with distinct plastic deformation. Beyond that, some panels torn out from the boundaries. It is shown that the plates in field scale with lower blasting loading deformed similarly to those uniformly loaded in lab scale, but performed a deformation mode as localized loaded in small scale with the charge mass increased. Following that, results from experiments were used to verify the empirical formula derived before, where the yield stress of material was replaced by a novel parameter. Reasonable agreement between the predictions and the actual deflections of plates with lower impulsive loading was observed. In addition, a fitted prediction was given, which could be used to evaluate the permanent deflection in engineering calculation. The results obtained from experiments are helpful to give an insight into the differences on blast behavior between the field and lab scales.
Original language | English |
---|---|
Journal | Advances in Mechanical Engineering |
Volume | 11 |
Issue number | 1 |
DOIs | |
Publication status | Published - 1 Jan 2019 |
Keywords
- Thin plate
- blast loading
- counterintuitive behavior
- failure mode
- permanent deformation