@inproceedings{ebf9cc794ef94f619edac7d8c85db6ff,
title = "Deep Co-Training for Cross-Modality Medical Image Segmentation",
abstract = "Due to the expensive segmentation annotation cost, cross-modality medical image segmentation aims to leverage annotations from a source modality (e.g. MRI) to learn a model for target modality (e.g. CT). In this paper, we present a novel method to tackle cross-modality medical image segmentation as semi-supervised multi-modal learning with image translation, which learns better feature representations and is more robust to source annotation scarcity. For semi-supervised multi-modal learning, we develop a deep co-training framework. We address the challenges of co-training on divergent labeled and unlabeled data distributions with a theoretical analysis on multi-view adaptation and propose decomposed multi-view adaptation, which shows better performance than a naive adaptation method on concatenated multi-view features. We further formulate inter-view regularization to alleviate overfitting in deep networks, which regularizes deep co-training networks to be compatible with the underlying data distribution. We perform extensive experiments to evaluate our framework. Our framework significantly outperforms state-of-the-art domain adaptation methods on three segmentation datasets, including two public datasets on cross-modality cardiac substructure segmentation and abdominal multi-organ segmentation and one large scale private dataset on cross-modality brain tissue segmentation. Our code is publicly available at https://github.com/zlheui/DCT.",
author = "Lei Zhu and Chan, {Ling Ling} and Ng, {Teck Khim} and Meihui Zhang and Ooi, {Beng Chin}",
note = "Publisher Copyright: {\textcopyright} 2023 The Authors.; 26th European Conference on Artificial Intelligence, ECAI 2023 ; Conference date: 30-09-2023 Through 04-10-2023",
year = "2023",
month = sep,
day = "28",
doi = "10.3233/FAIA230633",
language = "English",
series = "Frontiers in Artificial Intelligence and Applications",
publisher = "IOS Press BV",
pages = "3140--3147",
editor = "Kobi Gal and Kobi Gal and Ann Nowe and Nalepa, {Grzegorz J.} and Roy Fairstein and Roxana Radulescu",
booktitle = "ECAI 2023 - 26th European Conference on Artificial Intelligence, including 12th Conference on Prestigious Applications of Intelligent Systems, PAIS 2023 - Proceedings",
address = "Netherlands",
}