TY - GEN
T1 - Data-Efficient Image Quality Assessment with Attention-Panel Decoder
AU - Qin, Guanyi
AU - Hu, Runze
AU - Liu, Yutao
AU - Zheng, Xiawu
AU - Liu, Haotian
AU - Li, Xiu
AU - Zhang, Yan
N1 - Publisher Copyright:
Copyright © 2023, Association for the Advancement of Artificial Intelligence (www.aaai.org).
PY - 2023/6/27
Y1 - 2023/6/27
N2 - Blind Image Quality Assessment (BIQA) is a fundamental task in computer vision, which however remains unresolved due to the complex distortion conditions and diversified image contents. To confront this challenge, we in this paper propose a novel BIQA pipeline based on the Transformer architecture, which achieves an efficient quality-aware feature representation with much fewer data. More specifically, we consider the traditional fine-tuning in BIQA as an interpretation of the pre-trained model. In this way, we further introduce a Transformer decoder to refine the perceptual information of the CLS token from different perspectives. This enables our model to establish the quality-aware feature manifold efficiently while attaining a strong generalization capability. Meanwhile, inspired by the subjective evaluation behaviors of human, we introduce a novel attention panel mechanism, which improves the model performance and reduces the prediction uncertainty simultaneously. The proposed BIQA method maintains a lightweight design with only one layer of the decoder, yet extensive experiments on eight standard BIQA datasets (both synthetic and authentic) demonstrate its superior performance to the state-of-the-art BIQA methods, i.e., achieving the SRCC values of 0.875 (vs. 0.859 in LIVEC) and 0.980 (vs. 0.969 in LIVE). Checkpoints, logs and code will be available at https://github.com/narthchin/DEIQT.
AB - Blind Image Quality Assessment (BIQA) is a fundamental task in computer vision, which however remains unresolved due to the complex distortion conditions and diversified image contents. To confront this challenge, we in this paper propose a novel BIQA pipeline based on the Transformer architecture, which achieves an efficient quality-aware feature representation with much fewer data. More specifically, we consider the traditional fine-tuning in BIQA as an interpretation of the pre-trained model. In this way, we further introduce a Transformer decoder to refine the perceptual information of the CLS token from different perspectives. This enables our model to establish the quality-aware feature manifold efficiently while attaining a strong generalization capability. Meanwhile, inspired by the subjective evaluation behaviors of human, we introduce a novel attention panel mechanism, which improves the model performance and reduces the prediction uncertainty simultaneously. The proposed BIQA method maintains a lightweight design with only one layer of the decoder, yet extensive experiments on eight standard BIQA datasets (both synthetic and authentic) demonstrate its superior performance to the state-of-the-art BIQA methods, i.e., achieving the SRCC values of 0.875 (vs. 0.859 in LIVEC) and 0.980 (vs. 0.969 in LIVE). Checkpoints, logs and code will be available at https://github.com/narthchin/DEIQT.
UR - http://www.scopus.com/inward/record.url?scp=85167664894&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85167664894
T3 - Proceedings of the 37th AAAI Conference on Artificial Intelligence, AAAI 2023
SP - 2091
EP - 2100
BT - AAAI-23 Technical Tracks 2
A2 - Williams, Brian
A2 - Chen, Yiling
A2 - Neville, Jennifer
PB - AAAI press
T2 - 37th AAAI Conference on Artificial Intelligence, AAAI 2023
Y2 - 7 February 2023 through 14 February 2023
ER -