Data-Driven Model for Detection, Isolation and Accommodation of Faulty Angle of Attack Sensor Measurements in Fixed Winged Aircraft

Bemnet Wondimagegnehu Mersha*, Hongbin Ma

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Ethiopian Airlines' Boeing 737-8 MAX nosedived and crashed shortly after takeoff on March 10, 2019, at Ejere Town, south of Addis Ababa. A faulty angle of attack (AOA) sensor was the cause of the crash. Many airplane accidents have been linked to faulty AOA sensors in the past. The majority of the AOA sensor fault detection, isolation, and accommodation (SFDIA) literature relied on linear model-driven techniques, which are not suitable when the system's model is uncertain, complex, or nonlinear. Traditional multilayer perceptron (MLP) models have been employed in data-driven models in the literature and the effectiveness of deep learning-based data-driven models has not been investigated. In this work, a data collection and processing method that ensures the collected data is not monotonous and a data-driven model for AOA SFDIA is proposed. The proposed model uses a deep learning-based recurrent neural network (RNN) to accommodate for faulty AOA measurement under flight conditions with faulty AOA measurement, faulty total velocity measurement, and faulty pitch rate measurement. Conventional residual analysis with a fixed threshold is used to detect and isolate faulty AOA sensors. The proposed and benchmark models are trained with the adaptive momentum estimation (Adam) algorithm. We show that the proposed model effectively detects, isolates, and accommodates faulty AOA measurements when compared to other data-driven benchmark models. The method is able to detect and isolate faulty AOA sensors with a detection delay of 0.5 seconds for ramp failure and 0.1 seconds for step failure.

Original languageEnglish
Title of host publicationProceedings of the 34th Chinese Control and Decision Conference, CCDC 2022
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages558-564
Number of pages7
ISBN (Electronic)9781665478960
DOIs
Publication statusPublished - 2022
Event34th Chinese Control and Decision Conference, CCDC 2022 - Hefei, China
Duration: 15 Aug 202217 Aug 2022

Publication series

NameProceedings of the 34th Chinese Control and Decision Conference, CCDC 2022

Conference

Conference34th Chinese Control and Decision Conference, CCDC 2022
Country/TerritoryChina
CityHefei
Period15/08/2217/08/22

Keywords

  • Data-driven modeling
  • Faulty angle of attack measurement
  • Intelligent transportation systems
  • Isolation
  • Sensor fault Detection
  • and Accommodation (SFDIA) and Recurrent neural network

Fingerprint

Dive into the research topics of 'Data-Driven Model for Detection, Isolation and Accommodation of Faulty Angle of Attack Sensor Measurements in Fixed Winged Aircraft'. Together they form a unique fingerprint.

Cite this