Data-driven enhancement of blurry retinal images via generative adversarial networks

He Zhao, Bingyu Yang, Lvchen Cao, Huiqi Li*

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

28 Citations (Scopus)

Abstract

In this paper, we aim at improving the quality of blurry retinal images that are caused by ocular diseases. The blurry images could affect clinical diagnosis for both ophthalmologists and automatic aided system. Inspired by the great success of generative adversarial networks, a data-driven approach is proposed to enhance the blurry images in a weakly supervised manner. That is to say, instead of paired blurry and high-quality images, our approach can be trained with two sets of unpaired images. The advantage of unpaired training setting makes our approach easily applicable, since the annotated data are very limited in medical images. Compared with traditional methods, our model is an end-to-end approach without human designed adjustments or prior knowledge. However, it achieves a superior performance on blurry images. Besides, a dynamic retinal image feature constraint is proposed to guide the generator to improve the performance and avoid over-enhancing the extremely blurry region. Our approach can work on large image resolution which makes it widely beneficial to clinic images.

Original languageEnglish
Title of host publicationMedical Image Computing and Computer Assisted Intervention – MICCAI 2019 - 22nd International Conference, Proceedings
EditorsDinggang Shen, Pew-Thian Yap, Tianming Liu, Terry M. Peters, Ali Khan, Lawrence H. Staib, Caroline Essert, Sean Zhou
PublisherSpringer Science and Business Media Deutschland GmbH
Pages75-83
Number of pages9
ISBN (Print)9783030322380
DOIs
Publication statusPublished - 2019
Event22nd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2019 - Shenzhen, China
Duration: 13 Oct 201917 Oct 2019

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume11764 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference22nd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2019
Country/TerritoryChina
CityShenzhen
Period13/10/1917/10/19

Fingerprint

Dive into the research topics of 'Data-driven enhancement of blurry retinal images via generative adversarial networks'. Together they form a unique fingerprint.

Cite this