Data Collection Task Planning of a Fixed-Wing Unmanned Aerial Vehicle in Forest Fire Monitoring

Hao Zhang, Lihua Dou, Bin Xin*, Jie Chen, Minggang Gan*, Yulong Ding

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

20 Citations (Scopus)

Abstract

This article studies the data collection task planning for a fixed-wing unmanned aerial vehicle (UAV) in forest fire monitoring. Multiple wireless-based detection nodes (DNs) are distributed in high-risk areas of the forest to monitor the surrounding environment. The task of UAV is to circularly fly to them and collect the environmental data. Because of the kinematic constraints of UAV and the effective communication range between UAV and DN, this problem can be generally regarded as a Dubins traveling salesman problem with neighborhood (DTSPN). A bi-level hybridization-based metaheuristic algorithm (BLHMA) is proposed for solving this problem. At the first level, differential evolution (DE) optimizes the continuous-valued communication positions and UAV headings by the population-based search. For the asymmetric traveling salesman problem (ATSP) corresponding to the combination of the positions and headings generated by DE, a constructive heuristic based on self-organized multi-agent competition (SOMAC) is proposed to determine the discrete collection sequence. By competitive iterations in such a cooperative way in DE, a high-quality data collection tour can be generated. At the second level, a local search based on multistage approximate gradient is proposed to further refine the positions and headings, which accelerates the convergence of the BLHMA. Referring to a real-world scene of forest fire monitoring, the simulation experiments are designed, and comparative results show that BLHMA can find significantly shorter data collection tours in most cases over three state-of-the-art algorithms. The proposed UAV data collection planning algorithm is conducive to the efficient execution of the forest fire monitoring data collection mission and the energy saving of UAV.

Original languageEnglish
Article number9505651
Pages (from-to)109847-109864
Number of pages18
JournalIEEE Access
Volume9
DOIs
Publication statusPublished - 2021

Keywords

  • Unmanned aerial vehicle
  • constructive heuristic
  • data collection task planning
  • differential evolution
  • forest fire monitoring
  • mixed-variable optimization

Fingerprint

Dive into the research topics of 'Data Collection Task Planning of a Fixed-Wing Unmanned Aerial Vehicle in Forest Fire Monitoring'. Together they form a unique fingerprint.

Cite this