Abstract
Magnetism in solids generally originates from the localized d or f orbitals that are hosted by heavy transition-metal elements. Here, we demonstrate a mechanism for designing a half-metallic f-orbital Dirac fermion from superlight sp elements. Combining first-principles and model calculations, we show that bare and flat-band-sandwiched (FBS) Dirac bands can be created when C20 molecules are deposited into a two-dimensional hexagonal lattice, which are composed of f-molecular orbitals (MOs) derived from sp-atomic orbitals (AOs). Furthermore, charge doping of the FBS Dirac bands induces spontaneous spin polarization, converting the system into a half-metallic Dirac state. Based on this discovery, a model of a spin field effect transistor is proposed to generate and transport 100% spin-polarized carriers. Our finding illustrates a concept to realize exotic quantum states by manipulating MOs, instead of AOs, in orbital-designed molecular crystal lattices.
Original language | English |
---|---|
Article number | 085134 |
Journal | Physical Review B |
Volume | 96 |
Issue number | 8 |
DOIs | |
Publication status | Published - 23 Aug 2017 |
Externally published | Yes |