Coupling effect between road excitation and an in-wheel switched reluctance motor on vehicle ride comfort and active suspension control

Xinxin Shao*, Fazel Naghdy, Haiping Du, Yechen Qin

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

57 Citations (Scopus)

Abstract

The coupling effect between road excitation and an in-wheel switched reluctance motor (SRM) on vehicle ride comfort is numerically analysed. A hybrid control system consisting of fault tolerant H suspension controller and SRM controller for an in-wheel SRM driven electric vehicle is proposed to improve the vehicle ride comfort and motor operation performance. By conducting numerical simulations based on the developed quarter-car active suspension model and switched reluctance motor model, it is observed that the road roughness is highly coupled with SRM airgap eccentricity and unbalanced residual vertical force. The SRM airgap eccentricity is influenced by the road excitation and becomes time-varying such that a residual unbalanced radial force is induced; which is one of the major causes of SRM vibration. To suppress SRM vibration and to prolong the SRM lifespan, while at the same time improving vehicle ride comfort, a fault tolerant controller based on output feedback H control method is designed to reduce the sprung mass acceleration. Moreover, an SRM controller is adapted by using the combined Current Chopping Control (CCC) and Pulse Width Modulation control (PWM) to further improve the SRM performance. A comparison of passive suspension and suspensions with hybrid control method on the vehicle and SRM dynamic response under stochastic road excitation and bump road excitation is illustrated. The results indicate that the proposed hybrid control method can effectively reduce the SRM airgap eccentricity, residual unbalanced radial force and achieve better vehicle ride comfort.

Original languageEnglish
Pages (from-to)683-702
Number of pages20
JournalJournal of Sound and Vibration
Volume443
DOIs
Publication statusPublished - 17 Mar 2019

Keywords

  • Active suspension control
  • Fault tolerant H control
  • Hybrid control method
  • In-wheel switched reluctance motor

Fingerprint

Dive into the research topics of 'Coupling effect between road excitation and an in-wheel switched reluctance motor on vehicle ride comfort and active suspension control'. Together they form a unique fingerprint.

Cite this