Abstract
The interactions between cationic meso-tetrakis(4-(N-methylpyridiumyl))porphyrin (TMPyP4) and the G-quadruplex (G4) of human telomeric single-strand oligonucleotide d(TTAGGG)2 (S12) have been investigated by means of circular dichroism (CD), UV-visible absorption and fluorescence spectroscopies. It is found that TMPyP4 can preferentially induce the conformational conversion of the G4 structure from the parallel type to the parallel/antiparallel mixture in the presence of K+, and that it can directly induce the formation of antiparallel G4 structure from the single-strand oligonucleotide S12 in the absence of K+. Furthermore, the comparable experiments of TMPyP4 with two single-strand oligonucleotides S6 d(TTAGGG) and S24 d(TAGGG(TTAGGG)3T) in the absence of K+ show that TMPyP4 can also induce the formation of antiparallel G4 from S24 but not from S6, indicating that the end-loops of the G4 structure are the key factors for the formation of G4 induced by TMPyP4.
Original language | English |
---|---|
Pages (from-to) | 243-247 |
Number of pages | 5 |
Journal | Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy |
Volume | 74 |
Issue number | 1 |
DOIs | |
Publication status | Published - 15 Sept 2009 |
Keywords
- Conformational conversion
- G-quadruplex (G4)
- Spectroscopy
- TMPyP4