Configuration Design and Optimal Energy Management for Coupled-Split Powertrain Tractor

Haishi Dou, Hongqian Wei*, Youtong Zhang, Qiang Ai

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

5 Citations (Scopus)

Abstract

High-power tractors are regarded as effective operation tools in agriculture, and plugin hybrid tractors have shown potential as agricultural machinery, due to their wide application in energy conservation. However, the allocation of the output power of the motors and engine is a challenging task, given that the energy management strategy (EMS) is nonlinearly constrained. On the other hand, the structure of the continuous variable transmission (CVT) system is complicated, and affects the price of tractors. In this paper, a variable configuration of a tractor that could have the same performance as a complex CVT system is proposed. To address the EMS issues that have shown poor performance in real time, where the programming runs online, firstly a demand power prediction algorithm is proposed in a rotary tillage operation mode. Secondly, an equivalent fuel consumption minimization strategy (ECMS) is used to optimize the power distribution between the engine and the motors. In addition, the equivalent factor is optimized with an offline genetic algorithm. Thirdly, the equivalent factor is converted into a lookup table, and is used for an online power distribution with different driving mileages and state-of-charge (SOC). The simulation results indicate that the equivalent fuel consumption is reduced by 8.4% and extends the operating mileage of pure electric power. Furthermore, the error between the actual and forecasted demand power is less than 1%. The online EMS could improve the mileage of the tractor working cycle with a more feasible fuel economy based on demand power predictions.

Original languageEnglish
Article number1175
JournalMachines
Volume10
Issue number12
DOIs
Publication statusPublished - Dec 2022

Keywords

  • configuration design
  • coupled-split coupling tractors
  • energy management strategy
  • power demand forecasting

Fingerprint

Dive into the research topics of 'Configuration Design and Optimal Energy Management for Coupled-Split Powertrain Tractor'. Together they form a unique fingerprint.

Cite this