Coherent modulation of the electron temperature and electron–phonon couplings in a 2D material

Yingchao Zhang, Xun Shi*, Wenjing You, Zhensheng Tao, Yigui Zhong, Fairoja Cheenicode Kabeer, Pablo Maldonado, Peter M. Oppeneer, Michael Bauer, Kai Rossnagel, Henry Kapteyn, Margaret Murnane

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

37 Citations (Scopus)

Abstract

Ultrashort light pulses can selectively excite charges, spins, and phonons in materials, providing a powerful approach for manipulating their properties. Here we use femtosecond laser pulses to coherently manipulate the electron and phonon distributions, and their couplings, in the charge-density wave (CDW) material 1T-TaSe2. After exciting the material with a femtosecond pulse, fast spatial smearing of the laser-excited electrons launches a coherent lattice breathing mode, which in turn modulates the electron temperature. This finding is in contrast to all previous observations in multiple materials to date, where the electron temperature decreases monotonically via electron–phonon scattering. By tuning the laser fluence, the magnitude of the electron temperature modulation changes from ∼200 K in the case of weak excitation, to ∼1,000 K for strong laser excitation. We also observe a phase change of π in the electron temperature modulation at a critical fluence of 0.7 mJ/cm2, which suggests a switching of the dominant coupling mechanism between the coherent phonon and electrons. Our approach opens up routes for coherently manipulating the interactions and properties of two-dimensional and other quantum materials using light.

Original languageEnglish
Pages (from-to)8788-8793
Number of pages6
JournalProceedings of the National Academy of Sciences of the United States of America
Volume117
Issue number16
DOIs
Publication statusPublished - 21 Apr 2020
Externally publishedYes

Keywords

  • ARPES
  • Charge-density wave
  • Electron–phonon interactions
  • Ultrafast science

Fingerprint

Dive into the research topics of 'Coherent modulation of the electron temperature and electron–phonon couplings in a 2D material'. Together they form a unique fingerprint.

Cite this