TY - GEN
T1 - Circulant Tensor Graph Convolutional Network for Text Classification
AU - Xu, Xuran
AU - Zhang, Tong
AU - Xu, Chunyan
AU - Cui, Zhen
N1 - Publisher Copyright:
© 2022, Springer Nature Switzerland AG.
PY - 2022
Y1 - 2022
N2 - Graph convolutional network (GCN) has shown promising performance on the text classification tasks via modeling irregular correlations between word and document. There are multiple correlations within a text graph adjacency matrix, including word-word, word-document, and document-document, so we regard it as heterogeneous. While existing graph convolutional filters are constructed based on homogeneous information diffusion processes, which may not be appropriate to the heterogeneous graph. This paper proposes an expressive and efficient circulant tensor graph convolutional network (CTGCN). Specifically, we model a text graph into a multi-dimension tensor, which characterizes three types of homogeneous correlations separately. CTGCN constructs an expressive and efficient tensor filter based on the t-product operation, which designs a t-linear transformation in the tensor space with a block circulant matrix. Tensor operation t-product effectively extracts high-dimension correlation among heterogeneous feature spaces, which is customarily ignored by other GCN-based methods. Furthermore, we introduce a heterogeneity attention mechanism to obtain more discriminative features. Eventually, we evaluate our proposed CTGCN on five publicly used text classification datasets, extensive experiments demonstrate the effectiveness of the proposed model.
AB - Graph convolutional network (GCN) has shown promising performance on the text classification tasks via modeling irregular correlations between word and document. There are multiple correlations within a text graph adjacency matrix, including word-word, word-document, and document-document, so we regard it as heterogeneous. While existing graph convolutional filters are constructed based on homogeneous information diffusion processes, which may not be appropriate to the heterogeneous graph. This paper proposes an expressive and efficient circulant tensor graph convolutional network (CTGCN). Specifically, we model a text graph into a multi-dimension tensor, which characterizes three types of homogeneous correlations separately. CTGCN constructs an expressive and efficient tensor filter based on the t-product operation, which designs a t-linear transformation in the tensor space with a block circulant matrix. Tensor operation t-product effectively extracts high-dimension correlation among heterogeneous feature spaces, which is customarily ignored by other GCN-based methods. Furthermore, we introduce a heterogeneity attention mechanism to obtain more discriminative features. Eventually, we evaluate our proposed CTGCN on five publicly used text classification datasets, extensive experiments demonstrate the effectiveness of the proposed model.
KW - Graph convolutional network
KW - Tensor
KW - Text classification
UR - http://www.scopus.com/inward/record.url?scp=85130380661&partnerID=8YFLogxK
U2 - 10.1007/978-3-031-02375-0_3
DO - 10.1007/978-3-031-02375-0_3
M3 - Conference contribution
AN - SCOPUS:85130380661
SN - 9783031023743
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 32
EP - 46
BT - Pattern Recognition - 6th Asian Conference, ACPR 2021, Revised Selected Papers
A2 - Wallraven, Christian
A2 - Liu, Qingshan
A2 - Nagahara, Hajime
PB - Springer Science and Business Media Deutschland GmbH
T2 - 6th Asian Conference on Pattern Recognition, ACPR 2021
Y2 - 9 November 2021 through 12 November 2021
ER -