AUA-dE: An Adaptive Uncertainty Guided Attention for Diffusion MRI Models Estimation

Tianshu Zheng, Ruicheng Ba, Xiaoli Wang, Chuyang Ye, Dan Wu*

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Citation (Scopus)

Abstract

Diffusion MRI (dMRI) is a well-established tool for probing tissue microstructure properties. However, advanced dMRI models commonly have multiple compartments that are highly nonlinear and complex, and also require dense sampling in q-space. These problems have been investigated using deep learning based techniques. In existing approaches, the labels were calculated from the fully sampled q-space as the ground truth. However, for some of the dMRI models, dense sampling is hard to achieve due to the long scan time, and the low signal-to-noise ratio could lead to noisy labels that make it hard for the network to learn the relationship between the signals and labels. A good example is the time-dependent dMRI (TD-dMRI), which captures the microstructural size and transmembrane exchange by measuring the signal at varying diffusion times but requires dense sampling in both q-space and t-space. To overcome the noisy label problem and accelerate the acquisition, in this work, we proposed an adaptive uncertainty guided attention for diffusion MRI models estimation (AUA-dE) to estimate the microstructural parameters in the TD-dMRI model. We evaluated our proposed method with three different downsampling strategies, including q-space downsampling, t-space downsampling, and q-t space downsampling, on two different datasets: a simulation dataset and an experimental dataset from normal and injured rat brains. Our proposed method achieved the best performance compared to the previous q-space learning methods and the conventional optimization methods in terms of accuracy and robustness.

Original languageEnglish
Title of host publicationMedical Image Computing and Computer Assisted Intervention – MICCAI 2023 - 26th International Conference, Proceedings
EditorsHayit Greenspan, Hayit Greenspan, Anant Madabhushi, Parvin Mousavi, Septimiu Salcudean, James Duncan, Tanveer Syeda-Mahmood, Russell Taylor
PublisherSpringer Science and Business Media Deutschland GmbH
Pages142-151
Number of pages10
ISBN (Print)9783031439926
DOIs
Publication statusPublished - 2023
Event26th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2023 - Vancouver, Canada
Duration: 8 Oct 202312 Oct 2023

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume14227 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference26th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2023
Country/TerritoryCanada
CityVancouver
Period8/10/2312/10/23

Keywords

  • Diffusion MRI
  • Noisy Data
  • Parameter Estimation
  • Uncertainty Attention

Fingerprint

Dive into the research topics of 'AUA-dE: An Adaptive Uncertainty Guided Attention for Diffusion MRI Models Estimation'. Together they form a unique fingerprint.

Cite this