Anti-PD1 antibody and not anti-LAG-3 antibody improves the antitumor effect of photodynamic therapy for treating metastatic breast cancer

Shan Long, Yibing Zhao, Yuanyuan Xu, Bo Wang, Haixia Qiu, Hongyou Zhao, Jing Zeng, Defu Chen, Hui Li, Jiakang Shao, Xiaosong Li*, Ying Gu*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

Photodynamic therapy (PDT) has limited effects in treating metastatic breast cancer. Immune checkpoints can deplete the function of immune cells; however, the expression of immune checkpoints after PDT is unclear. This study investigates whether the limited efficacy of PDT is due to upregulated immune checkpoints and tries to combine the PDT and immune checkpoint inhibitor to observe the efficacy. A metastatic breast cancer model was treated by PDT mediated by hematoporphyrin derivatives (HpD-PDT). The anti-tumor effect of HpD-PDT was observed, as well as CD4+T, CD8+T and calreticulin (CRT) by immunohistochemistry and immunofluorescence. Immune checkpoints on T cells were analyzed by flow cytometry after HpD-PDT. When combining PDT with immune checkpoint inhibitors, the antitumor effect and immune effect were assessed. For HpD-PDT at 100mW/cm2 and 40, 60 and 80J/cm2, primary tumors were suppressed and CD4+T, CD8+T and CRT were elevated; however, distant tumors couldn't be inhibited and survival could not be prolonged. Immune checkpoints on T cells, especially PD1 and LAG-3 after HpD-PDT, were upregulated, which may explain the reason for the limited HpD-PDT effect. After PDT combined with anti-PD1 antibody, but not with anti-LAG-3 antibody, both the primary and distant tumors were significantly inhibited and the survival time was prolonged, additionally, CD4+T, CD8+T, IFN-γ+CD4+T and TNF-α+CD4+T cells were significantly increased compared with HpD-PDT. HpD-PDT could not combat metastatic breast cancer. PD1 and LAG-3 were upregulated after HpD-PDT. Anti-PD1 antibody, but not anti-LAG-3 antibody, could augment the antitumor effect of HpD-PDT for treating metastatic breast cancer.

Original languageEnglish
Article number2350020
JournalJournal of Innovative Optical Health Sciences
Volume17
Issue number1
DOIs
Publication statusPublished - 1 Jan 2024

Keywords

  • Photodynamic therapy
  • anti-LAG-3 antibody
  • anti-PD1 antibody
  • anti-tumor immune effects
  • metastatic breast cancer

Fingerprint

Dive into the research topics of 'Anti-PD1 antibody and not anti-LAG-3 antibody improves the antitumor effect of photodynamic therapy for treating metastatic breast cancer'. Together they form a unique fingerprint.

Cite this