Abstract
Eye detection is the most important and critical task of diverse applications such as face detection and recognition. However, most eye detection methods do not fully consider detection robustness to people with glasses, illumination variation, head pose change, and eye occlusions. This paper proposes an efficient hybrid eye detection method based on a gray intensity variance filter (VF) and support vector machines (SVMs). Firstly, the VF is used for eliminating most of noneye region images to keep less candidate eye regions. Then accurate two eye regions are determined easily through the trained SVM classifier. Moreover, this paper provides an assessment of the sensitivity of obtained parameters in the SVM classifier on eye detection accuracy. The proposed method was evaluated on different face databases. The experimental results show that the method can improve the performance of eye detection and achieve a higher detection accuracy compared with state-of-the-art methods.
Original language | English |
---|---|
Pages (from-to) | 1586-1603 |
Number of pages | 18 |
Journal | Turkish Journal of Electrical Engineering and Computer Sciences |
Volume | 24 |
Issue number | 3 |
DOIs | |
Publication status | Published - 2016 |
Keywords
- Eye detection
- SVM
- VF