TY - JOUR
T1 - A statistical perspective on non-deterministic polynomial-time hard ordering problems
T2 - Making use of design for order-of-addition experiments
AU - Chen, Jianbin
AU - Peng, Jiayu
AU - Lin, Dennis K.J.
N1 - Publisher Copyright:
© 2021
PY - 2021/12
Y1 - 2021/12
N2 - The need for solving NP-hard problems emerges from many fields, including configuration, process monitoring, scheduling, planning, among others. One type of NP-hard problem is the ordering problem, where the goal is to find the optimal sequence. This is, in fact, identical to the purpose of Order-of-Addition (OofA) problem. Based on this connection, this paper proposes a statistical methodology to infer solutions of NP-hard ordering problems via design of OofA experiments. An efficient pairwise-order (PWO) modeling approach is able to identify statistically significant PWO effects, and consequentially find the optimal order(s). In general, the proposed method could solve any NP-hard ordering problems, as long as its underlying structure can be adequately approximated by the PWO model. Empirical studies (Job scheduling problems and run orders problems) show that the proposed methodology often yields the optimal (or nearly optimal) orders. Theoretical support is given under specific setups. This paper is an interdisciplinary collaboration between statistics and optimization, and it pioneers an approach that connects two seemingly unrelated research topics together: the NP-hard ordering problems and the OofA experiments. We hope that the idea of this paper will provide a fresh perspective on NP-hard ordering problems and also motivate fruitful applications of the techniques related to OofA experiments.
AB - The need for solving NP-hard problems emerges from many fields, including configuration, process monitoring, scheduling, planning, among others. One type of NP-hard problem is the ordering problem, where the goal is to find the optimal sequence. This is, in fact, identical to the purpose of Order-of-Addition (OofA) problem. Based on this connection, this paper proposes a statistical methodology to infer solutions of NP-hard ordering problems via design of OofA experiments. An efficient pairwise-order (PWO) modeling approach is able to identify statistically significant PWO effects, and consequentially find the optimal order(s). In general, the proposed method could solve any NP-hard ordering problems, as long as its underlying structure can be adequately approximated by the PWO model. Empirical studies (Job scheduling problems and run orders problems) show that the proposed methodology often yields the optimal (or nearly optimal) orders. Theoretical support is given under specific setups. This paper is an interdisciplinary collaboration between statistics and optimization, and it pioneers an approach that connects two seemingly unrelated research topics together: the NP-hard ordering problems and the OofA experiments. We hope that the idea of this paper will provide a fresh perspective on NP-hard ordering problems and also motivate fruitful applications of the techniques related to OofA experiments.
KW - Design of experiment
KW - NP-hard ordering problem
KW - Scheduling problem
KW - Statistical approach
UR - http://www.scopus.com/inward/record.url?scp=85118545042&partnerID=8YFLogxK
U2 - 10.1016/j.cie.2021.107773
DO - 10.1016/j.cie.2021.107773
M3 - Article
AN - SCOPUS:85118545042
SN - 0360-8352
VL - 162
JO - Computers and Industrial Engineering
JF - Computers and Industrial Engineering
M1 - 107773
ER -