A Novel Ensemble ELM for Human Activity Recognition Using Smartphone Sensors

Zhenghua Chen, Chaoyang Jiang*, Lihua Xie

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

117 Citations (Scopus)

Abstract

Human activity recognition plays a unique role in many important applications, including ubiquitous computing, health-care services, and smart buildings. Due to the nonintrusive property of smartphones, smartphone sensors are widely used for the identification of human activities. Since the signals of smartphone sensors are quite noisy, feature engineering will be performed to extract more discriminant representations. Then, various machine learning algorithms can be employed to recognize different human activities. Extreme learning machine (ELM) has been shown to be effective in classification tasks with extremely fast learning speed. Due to its randomness property, it is naturally suitable for ensemble learning. In this paper, we propose a novel ensemble ELM algorithm for human activity recognition using smartphone sensors. Gaussian random projection is employed to initialize the input weights of base ELMs. By doing this, more diversities can be generated to boost the performance of ensemble learning. Real experimental data has been applied to evaluate the performance of our proposed approach. We also conduct a comparison of the proposed approach with some state-of-the-art approaches in the literature. The experimental results indicate that our proposed ensemble ELM approach outperforms these approaches and can achieve recognition accuracies of 97.35\% and 98.88\% on two datasets.

Original languageEnglish
Article number8462779
Pages (from-to)2691-2699
Number of pages9
JournalIEEE Transactions on Industrial Informatics
Volume15
Issue number5
DOIs
Publication statusPublished - May 2019

Keywords

  • Ensemble Extreme learning machine (ELM)
  • Gaussian random projection (GRP)
  • feature engineering
  • human activity recognition
  • smartphone sensors

Fingerprint

Dive into the research topics of 'A Novel Ensemble ELM for Human Activity Recognition Using Smartphone Sensors'. Together they form a unique fingerprint.

Cite this