TY - JOUR
T1 - A Motion State Judgment and Radar Imaging Algorithm Selection Method for Ship
AU - Zhang, Tianyi
AU - Liu, Shujiang
AU - Ding, Zegang
AU - Gao, Yongpeng
AU - Zhu, Kaiwen
N1 - Publisher Copyright:
© 1980-2012 IEEE.
PY - 2022
Y1 - 2022
N2 - Radar imaging for ships is hard because of the unpredictable motion states of ships. Existing ship radar imaging methods usually do not take the effects of different motion states into account, which leads to a degraded imaging result when the utilized imaging algorithm cannot match the target motion state. To solve this problem, a motion state judgment and radar imaging algorithm selection method is proposed, whose keys are to estimate the motion parameters of scatter points on the ship, judge the target motion state based on the space-variant features of the estimated motion parameters, and further choose a proper imaging algorithm to achieve the radar imaging result with higher quality. In this article, the radar imaging model of ship is first constructed, and the spatial variance features of motion parameters are quantitatively analyzed. Next, an improved motion parameter estimation method utilizing generalized Radon-Fourier transform (GRFT) modified by sidelobe-learning particle swarm optimization (SSLPSO) and relaxation (RELAX) technique is proposed, which can solve the performance reduction caused by the unnecessary values introduced by the method based on traditional GRFT and realize accurate motion parameter estimation. Then, based on the estimated motion parameters, a motion state judgment and radar imaging algorithm selection method, which takes the targets' motion state, theoretical resolutions, as well as the effect of high-order phase error into consideration, is proposed to obtain a high-quality and high-resolution radar image. Finally, computer simulation and experimental results of GaoFen-3 (GF-3) satellite single channel data validate the proposed method.
AB - Radar imaging for ships is hard because of the unpredictable motion states of ships. Existing ship radar imaging methods usually do not take the effects of different motion states into account, which leads to a degraded imaging result when the utilized imaging algorithm cannot match the target motion state. To solve this problem, a motion state judgment and radar imaging algorithm selection method is proposed, whose keys are to estimate the motion parameters of scatter points on the ship, judge the target motion state based on the space-variant features of the estimated motion parameters, and further choose a proper imaging algorithm to achieve the radar imaging result with higher quality. In this article, the radar imaging model of ship is first constructed, and the spatial variance features of motion parameters are quantitatively analyzed. Next, an improved motion parameter estimation method utilizing generalized Radon-Fourier transform (GRFT) modified by sidelobe-learning particle swarm optimization (SSLPSO) and relaxation (RELAX) technique is proposed, which can solve the performance reduction caused by the unnecessary values introduced by the method based on traditional GRFT and realize accurate motion parameter estimation. Then, based on the estimated motion parameters, a motion state judgment and radar imaging algorithm selection method, which takes the targets' motion state, theoretical resolutions, as well as the effect of high-order phase error into consideration, is proposed to obtain a high-quality and high-resolution radar image. Finally, computer simulation and experimental results of GaoFen-3 (GF-3) satellite single channel data validate the proposed method.
KW - Generalized Radon-Fourier transform (GRFT)
KW - inverse synthetic aperture radar (ISAR)
KW - motion parameter estimation
KW - radar imaging
KW - synthetic aperture radar (SAR)
UR - http://www.scopus.com/inward/record.url?scp=85140725436&partnerID=8YFLogxK
U2 - 10.1109/TGRS.2022.3212674
DO - 10.1109/TGRS.2022.3212674
M3 - Article
AN - SCOPUS:85140725436
SN - 0196-2892
VL - 60
JO - IEEE Transactions on Geoscience and Remote Sensing
JF - IEEE Transactions on Geoscience and Remote Sensing
M1 - 5236318
ER -