A hierarchy based influence maximization algorithm in social networks

Lingling Li, Kan Li*, Chao Xiang

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Citation (Scopus)

Abstract

Influence maximization refers to mining top-K most influential nodes from a social network to maximize the final propagation of influence in the network, which is one of the key issues in social network analysis. It is a discrete optimization problem and is also NP-hard under both independent cascade and linear threshold models. The existing researches show that although the greedy algorithm can achieve an approximate ratio of (1-1/e), its time cost is expensive. Heuristic algorithms can improve the efficiency, but they sacrifice a certain degree of accuracy. In order to improve efficiency without sacrificing much accuracy, in this paper, we propose a new approach called Hierarchy based Influence Maximization algorithm (HBIM in short) to mine top-K influential nodes. It is a two-phase method: (1) an algorithm for detecting information diffusion levels based on the first-order and second-order proximity between social nodes. (2) a dynamic programming algorithm for selecting levels to find influential nodes. Experiments show that our algorithm outperforms the benchmarks.

Original languageEnglish
Title of host publicationArtificial Neural Networks and Machine Learning – ICANN 2018 - 27th International Conference on Artificial Neural Networks, 2018, Proceedings
EditorsYannis Manolopoulos, Barbara Hammer, Ilias Maglogiannis, Vera Kurkova, Lazaros Iliadis
PublisherSpringer Verlag
Pages434-443
Number of pages10
ISBN (Print)9783030014209
DOIs
Publication statusPublished - 2018
Event27th International Conference on Artificial Neural Networks, ICANN 2018 - Rhodes, Greece
Duration: 4 Oct 20187 Oct 2018

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume11140 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference27th International Conference on Artificial Neural Networks, ICANN 2018
Country/TerritoryGreece
CityRhodes
Period4/10/187/10/18

Keywords

  • Hierarchy
  • Influence maximization
  • Social networks

Fingerprint

Dive into the research topics of 'A hierarchy based influence maximization algorithm in social networks'. Together they form a unique fingerprint.

Cite this