A dynamic regulating mechanism for increased airflow speed range in micro piezoelectric turbines

Hailing Fu*, Mario D'Auria, Guangbin Dou, Eric M. Yeatman

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

3 Citations (Scopus)

Abstract

The paper reports the design and fabrication of a micro-planar spring for a dynamic regulating mechanism to decrease the cut-in (start-up) airflow speed of a piezoelectric turbine. This mechanism is implemented by adjusting the magnetic coupling between the turbine rotor and a piezoelectric cantilever using the spring. Varied spring shapes and dimensions were analyzed with the finite element method (FEM) to optimize the structure. A micro spring with an ultra-low spring constant of 0.78 N/m was fabricated from titanium foil by laser machining. The spring was installed into a miniaturized air turbine to achieve the self-regulation. The cut-in speed was 2.34 m/s, showing a 30% improvement against a non-regulated turbine.

Original languageEnglish
Title of host publicationMEMS 2016 - 29th IEEE International Conference on Micro Electro Mechanical Systems
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1220-1223
Number of pages4
ISBN (Electronic)9781509019731
DOIs
Publication statusPublished - 26 Feb 2016
Externally publishedYes
Event29th IEEE International Conference on Micro Electro Mechanical Systems, MEMS 2016 - Shanghai, China
Duration: 24 Jan 201628 Jan 2016

Publication series

NameProceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS)
Volume2016-February
ISSN (Print)1084-6999

Conference

Conference29th IEEE International Conference on Micro Electro Mechanical Systems, MEMS 2016
Country/TerritoryChina
CityShanghai
Period24/01/1628/01/16

Fingerprint

Dive into the research topics of 'A dynamic regulating mechanism for increased airflow speed range in micro piezoelectric turbines'. Together they form a unique fingerprint.

Cite this