A deep supervised transformer U-shaped full-resolution residual network for the segmentation of breast ultrasound image

Jiale Zhou, Zuoxun Hou, Hongyan Lu, Wenhan Wang, Wanchen Zhao, Zenan Wang, Dezhi Zheng, Shuai Wang, Wenzhong Tang, Xiaolei Qu*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)

Abstract

Purpose: Breast ultrasound (BUS) is an important breast imaging tool. Automatic BUS image segmentation can measure the breast tumor size objectively and reduce doctors’ workload. In this article, we proposed a deep supervised transformer U-shaped full-resolution residual network (DSTransUFRRN) to segment BUS images. Methods: In the proposed method, a full-resolution residual stream and a deep supervision mechanism were introduced into TransU-Net. The residual stream can keep full resolution features from different levels and enhance features fusion. Then, the deep supervision can suppress gradient dispersion. Moreover, the transformer module can suppress irrelevant features and improve feature extraction process. Two datasets (dataset A and B) were used for training and evaluation. The dataset A included 980 BUS image samples and the dataset B had 163 BUS image samples. Results: Cross-validation was conducted. For the dataset A, the proposed DSTransUFRRN achieved significantly higher Dice (91.04 ± 0.86%) than all compared methods (p < 0.05). For the dataset B, the Dice was lower than that for the dataset A due to the small number of samples, but the Dice of DSTransUFRRN (88.15% ± 2.11%) was significantly higher than that of other compared methods (p < 0.05). Conclusions: In this study, we proposed DSTransUFRRN for BUS image segmentation. The proposed methods achieved significantly higher accuracy than the compared previous methods.

Original languageEnglish
Pages (from-to)7513-7524
Number of pages12
JournalMedical Physics
Volume50
Issue number12
DOIs
Publication statusPublished - Dec 2023
Externally publishedYes

Keywords

  • breast cancer
  • breast ultrasound image
  • deep learning
  • segmentation

Fingerprint

Dive into the research topics of 'A deep supervised transformer U-shaped full-resolution residual network for the segmentation of breast ultrasound image'. Together they form a unique fingerprint.

Cite this