TY - GEN
T1 - 2D-DFrFT based deep network for ship classification in remote sensing imagery
AU - Shi, Qiaoqiao
AU - Li, Wei
AU - Tao, Ran
N1 - Publisher Copyright:
© 2018 IEEE.
PY - 2018/10/8
Y1 - 2018/10/8
N2 - Ship classification in optical remote sensing images is a fundamental but challenging problem with wide range of applications. Deep convolutional neural network (CNN) has shown excellent performance in object classification; however, limited available training samples prevent CNN for ship classification. In this paper, a novel ship-classification framework consisting of two-branch CNN and two dimensional discrete fractional Fourier transform (2D-DFrFT) is proposed. Firstly, the amplitude and phase information of ship image in 2D-DFrFT is extracted. Due to the fact that different orders of 2D-DFrFT have different contribution on the process of feature extraction of ship image. Thus the amplitude (M) and phase (P) value obtained in different orders are regarded as the input of two-branch CNN that can learn the high-level features automatically. After multiple features learning, decision-level fusion is adopted for final classification. The remote sensing image data, named as BCCT200-resize, is utilized for validation. Compared to the existing state-of-art algorithms, the proposed method has superior performance.
AB - Ship classification in optical remote sensing images is a fundamental but challenging problem with wide range of applications. Deep convolutional neural network (CNN) has shown excellent performance in object classification; however, limited available training samples prevent CNN for ship classification. In this paper, a novel ship-classification framework consisting of two-branch CNN and two dimensional discrete fractional Fourier transform (2D-DFrFT) is proposed. Firstly, the amplitude and phase information of ship image in 2D-DFrFT is extracted. Due to the fact that different orders of 2D-DFrFT have different contribution on the process of feature extraction of ship image. Thus the amplitude (M) and phase (P) value obtained in different orders are regarded as the input of two-branch CNN that can learn the high-level features automatically. After multiple features learning, decision-level fusion is adopted for final classification. The remote sensing image data, named as BCCT200-resize, is utilized for validation. Compared to the existing state-of-art algorithms, the proposed method has superior performance.
KW - 2D-DFrFT
KW - Convolutional neural Network
KW - Optical imagery
KW - Ship classification
UR - http://www.scopus.com/inward/record.url?scp=85056549929&partnerID=8YFLogxK
U2 - 10.1109/PRRS.2018.8486413
DO - 10.1109/PRRS.2018.8486413
M3 - Conference contribution
AN - SCOPUS:85056549929
T3 - 2018 10th IAPR Workshop on Pattern Recognition in Remote Sensing, PRRS 2018
BT - 2018 10th IAPR Workshop on Pattern Recognition in Remote Sensing, PRRS 2018
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 10th IAPR Workshop on Pattern Recognition in Remote Sensing, PRRS 2018
Y2 - 19 August 2018 through 20 August 2018
ER -