TY - JOUR
T1 - Two completely independent spanning trees of claw-free graphs
AU - Chen, Xiaodong
AU - Li, Mingchu
AU - Xiong, Liming
N1 - Publisher Copyright:
© 2022 Elsevier B.V.
PY - 2022/12
Y1 - 2022/12
N2 - If a graph G contains two spanning trees T1,T2 such that for each two distinct vertices x,y of G, the (x,y)-path in each Ti has no common edge and no common vertex except for the two ends, then T1,T2 are called two completely independent spanning trees (CISTs) of G,i∈{1,2}. If the subgraph induced by the neighbor set of a vertex u in a graph G is connected, then u is an eligible vertex of G. An hourglass is a graph with degree 4,2,2,2,2 and (P6)2 denotes the square graph of a path P6 on six vertices. Araki (2014) [1] proved that if a graph G satisfies the Dirac's condition, which is also sufficient condition for hamiltonian graphs, then G contains two CISTs. Ryjáček proposed that a claw-free graph G is hamiltonian if and only if its Ryjáček's closure, denoted by cl(G), is hamiltonian. In this paper, we prove that if G is a {claw, hourglass, (P6)2}-free graph with δ(G)≥4, then G contains two CISTs if and only if cl(G) has two CISTs. The bound of the minimum degree in our result is best possible.
AB - If a graph G contains two spanning trees T1,T2 such that for each two distinct vertices x,y of G, the (x,y)-path in each Ti has no common edge and no common vertex except for the two ends, then T1,T2 are called two completely independent spanning trees (CISTs) of G,i∈{1,2}. If the subgraph induced by the neighbor set of a vertex u in a graph G is connected, then u is an eligible vertex of G. An hourglass is a graph with degree 4,2,2,2,2 and (P6)2 denotes the square graph of a path P6 on six vertices. Araki (2014) [1] proved that if a graph G satisfies the Dirac's condition, which is also sufficient condition for hamiltonian graphs, then G contains two CISTs. Ryjáček proposed that a claw-free graph G is hamiltonian if and only if its Ryjáček's closure, denoted by cl(G), is hamiltonian. In this paper, we prove that if G is a {claw, hourglass, (P6)2}-free graph with δ(G)≥4, then G contains two CISTs if and only if cl(G) has two CISTs. The bound of the minimum degree in our result is best possible.
KW - Claw-free graphs
KW - Eligible vertex
KW - Two CISTs
UR - http://www.scopus.com/inward/record.url?scp=85134213847&partnerID=8YFLogxK
U2 - 10.1016/j.disc.2022.113080
DO - 10.1016/j.disc.2022.113080
M3 - Article
AN - SCOPUS:85134213847
SN - 0012-365X
VL - 345
JO - Discrete Mathematics
JF - Discrete Mathematics
IS - 12
M1 - 113080
ER -