Road profile estimation for suspension system based on the minimum model error criterion combined with a Kalman filter

Zhen Feng Wang, Ming Ming Dong, Ye Chen Qin, Liang Gu*

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

13 引用 (Scopus)

摘要

This paper presents a novel approach for improving the estimation accuracy of the road profile for a vehicle suspension system. To meet the requirements of road profile estimation for road management and reproduction of system excitation, previous studies can be divided into data‑driven and model based approaches. These studies mainly focused on road profile estimation while seldom considering the uncertainty of parameters. However, uncertainty is unavoidable for various aspects of suspension system, e.g., varying sprung mass, damper and tire nonlinear performance. In this study, to improve the estimation accuracy for a varying sprung mass, a novel algorithm was derived based on the Minimum Model Error (MME) criterion and a Kalman Filter (KF). Since the MME criterion method utilizes the minimum value principle to solve the model error based on a model error function, the MME criterion can effectively deal with the estimation error. Then, the proposed algorithm was applied to a 2 degree-of-freedom (DOF) suspension system model under ISO Level-B, ISO Level-C and ISO Level-D road excitations. Simulation results and experimental data obtained using a quarter-vehicle test rig revealed that the proposed approach achieves higher road estimation accuracy compared to traditional KF methods.

源语言英语
页(从-至)4550-4571
页数22
期刊Journal of Vibroengineering
19
6
DOI
出版状态已出版 - 1 9月 2017

指纹

探究 'Road profile estimation for suspension system based on the minimum model error criterion combined with a Kalman filter' 的科研主题。它们共同构成独一无二的指纹。

引用此