摘要
Lithium metal is considered a “Holy Grail” of anode materials for high-energy-density batteries. However, both dendritic lithium deposition and infinity dimension change during long-term cycling have extremely restricted its practical applications for energy storage devices. Here, a thermal infusion strategy for prestoring lithium into a stable nickel foam host is demonstrated and a composite anode is achieved. In comparison with the bare lithium, the composite anode exhibits stable voltage profiles (200 mV at 5.0 mA cm−2) with a small hysteresis beyond 100 cycles in carbonate-based electrolyte, as well as high rate capability, significantly reduced interfacial resistance, and small polarization in a full-cell battery with Li4Ti5O12 or LiFePO4 as counter electrode. More importantly, in addition to the fact that lithium is successfully confined in the metallic nickel foam host, uniform lithium plating/stripping is achieved with a low dimension change (merely ≈3.1%) and effective inhibition of dendrite formation. The mechanism for uniform lithium stripping/plating behavior is explained based on a surface energy model.
源语言 | 英语 |
---|---|
文章编号 | 1700348 |
期刊 | Advanced Functional Materials |
卷 | 27 |
期 | 24 |
DOI | |
出版状态 | 已出版 - 27 6月 2017 |
已对外发布 | 是 |