Navigation Finsler metrics on a gradient Ricci soliton

Ying Li, Xiao Huan Mo*, Xiao Yang Wang

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

摘要

In this paper, we study a class of Finsler metrics defined by a vector field on a gradient Ricci soliton. We obtain a necessary and sufficient condition for these Finsler metrics on a compact gradient Ricci soliton to be of isotropic S-curvature by establishing a new integral inequality. Then we determine the Ricci curvature of navigation Finsler metrics of isotropic S-curvature on a gradient Ricci soliton generalizing result only known in the case when such soliton is of Einstein type. As its application, we obtain the Ricci curvature of all navigation Finsler metrics of isotropic S-curvature on Gaussian shrinking soliton.

源语言英语
页(从-至)266-275
页数10
期刊Applied Mathematics
39
2
DOI
出版状态已出版 - 6月 2024

指纹

探究 'Navigation Finsler metrics on a gradient Ricci soliton' 的科研主题。它们共同构成独一无二的指纹。

引用此