Minimum reconstruction error in feature-specific imaging

Jun Ke*, Michael D. Stenner, Mark A. Neifeld

*此作品的通讯作者

科研成果: 期刊稿件会议文章同行评审

7 引用 (Scopus)

摘要

We describe theoretical and experimental results for a new class of optimal features for feature-specific imaging (FSI). In this paper, we theoretically solve the reconstruction problem without noise, and find a more general solution than principle component analysis (PCA). We present a generalized framework to Qnd FSI projection matrices. Using Stochastic Tunneling, we find an optimal solution in the presence of noise and under an energy conservation constraint. We also show that a non-negativity requirement does not significantly reduce system performance. Finally, we propose an experimental system for FSI using a polarization-based optical pipeline processor.

源语言英语
文章编号02
页(从-至)7-12
页数6
期刊Proceedings of SPIE - The International Society for Optical Engineering
5817
DOI
出版状态已出版 - 2005
已对外发布
活动Visual Information Processing XIV - Orlando, FL, 美国
期限: 29 3月 200530 3月 2005

指纹

探究 'Minimum reconstruction error in feature-specific imaging' 的科研主题。它们共同构成独一无二的指纹。

引用此