TY - GEN
T1 - Large-scale single-pixel imaging via deep learning
AU - Xie, Siyu
AU - Peng, Lintao
AU - Bian, Liheng
N1 - Publisher Copyright:
© 2022 SPIE.
PY - 2022
Y1 - 2022
N2 - Single-pixel imaging uses a single-pixel detector to capture all photons emitted from the two-dimensional scene, and then calculates and reconstructs the two-dimensional target scene image from the one-dimensional measurement data through single-pixel reconstruction methods (such as linear superposition, compressed sensing or deep learning) based on the one-dimensional acquisition data and the corresponding illumination coding. Compared with traditional cameras, single-pixel imaging has the advantages of high signal-to-noise ratio and wide spectrum. Due to these advantages, single-pixel imaging has been widely used in multispectral imaging. However, the traditional single-pixel image reconstruction methods have some disadvantages, such as low resolution, huge time consuming and poor reconstruction quality. In this paper, we propose a single-pixel image reconstruction method based on neural network. Compared with the traditional single-pixel image reconstruction method, this method has better reconstruction quality at lower sampling rate. Specifically, in this model, we first use a small optimized-patterns to simulate a single-pixel camera to sample the image to obtain the measured values, and then extract multi-channel high-dimensional semantic features from the sampled values through a high-dimensional semantic feature extraction network. Then, the multi-scale residual network module is used to construct the feature pyramid up-sampling module to up sample the high-dimensional semantic features. In the training process, the network parameters and pattern are jointly optimized to obtain the optimal network model and pattern. With the help of large-scale and pre-training, our reconstructed image has higher resolution, shorter reconstruction time and better reconstruction quality.
AB - Single-pixel imaging uses a single-pixel detector to capture all photons emitted from the two-dimensional scene, and then calculates and reconstructs the two-dimensional target scene image from the one-dimensional measurement data through single-pixel reconstruction methods (such as linear superposition, compressed sensing or deep learning) based on the one-dimensional acquisition data and the corresponding illumination coding. Compared with traditional cameras, single-pixel imaging has the advantages of high signal-to-noise ratio and wide spectrum. Due to these advantages, single-pixel imaging has been widely used in multispectral imaging. However, the traditional single-pixel image reconstruction methods have some disadvantages, such as low resolution, huge time consuming and poor reconstruction quality. In this paper, we propose a single-pixel image reconstruction method based on neural network. Compared with the traditional single-pixel image reconstruction method, this method has better reconstruction quality at lower sampling rate. Specifically, in this model, we first use a small optimized-patterns to simulate a single-pixel camera to sample the image to obtain the measured values, and then extract multi-channel high-dimensional semantic features from the sampled values through a high-dimensional semantic feature extraction network. Then, the multi-scale residual network module is used to construct the feature pyramid up-sampling module to up sample the high-dimensional semantic features. In the training process, the network parameters and pattern are jointly optimized to obtain the optimal network model and pattern. With the help of large-scale and pre-training, our reconstructed image has higher resolution, shorter reconstruction time and better reconstruction quality.
KW - large-scale pre-training
KW - pyramid multi-scale feature module
KW - single-pixel imaging
UR - http://www.scopus.com/inward/record.url?scp=85148218874&partnerID=8YFLogxK
U2 - 10.1117/12.2643014
DO - 10.1117/12.2643014
M3 - Conference contribution
AN - SCOPUS:85148218874
T3 - Proceedings of SPIE - The International Society for Optical Engineering
BT - Optoelectronic Imaging and Multimedia Technology IX
A2 - Dai, Qionghai
A2 - Shimura, Tsutomu
A2 - Zheng, Zhenrong
PB - SPIE
T2 - Optoelectronic Imaging and Multimedia Technology IX 2022
Y2 - 5 December 2022 through 11 December 2022
ER -