FAULT DIAGNOSIS OF BATTERIES IN ENERGY STORAGE SYSTEMS BASED ON MODEL FUSION

Kang Chen, Xuan Li, Shengxu Huang, Ni Lin*

*此作品的通讯作者

科研成果: 期刊稿件会议文章同行评审

摘要

With the widespread application of energy storage systems, thermal runaway of lithium-ion batteries has become an increasingly serious concern. Currently, most studies related to battery fault diagnosis focus on exploring external characteristics of the batteries to detect potential faults. However, some external characteristics like voltage inconsistency may not be strongly correlated with battery faults, thus traditional fault diagnosis fail to establish sufficient and necessary relationships with faults. To solve this problem, we propose a novel solution to the deficiencies of traditional battery fault diagnostics by considering both the internal states of batteries and risky usage behaviors throughout operational life. To fulfill this idea, an electrochemical model is established to capture battery internal states and a risk accumulation coefficient to characterize battery risky behaviors. On top of these, a self-attention mechanism model is employed to identify potential faults by fusing results from both aspects. The proposed method is trained and verified using data from real-world batteries and achieves an accuracy rate of 97.37%. Compared to existing methods, the proposed method offers higher fault identification accuracy with deeper understanding of fault development and triggering mechanisms.

源语言英语
页(从-至)1282-1286
页数5
期刊IET Conference Proceedings
2024
6
DOI
出版状态已出版 - 2024
活动20th International Conference on AC and DC Power Transmission 2024, ACDC 2024 - Shanghai, 中国
期限: 12 7月 202415 7月 2024

指纹

探究 'FAULT DIAGNOSIS OF BATTERIES IN ENERGY STORAGE SYSTEMS BASED ON MODEL FUSION' 的科研主题。它们共同构成独一无二的指纹。

引用此