Facial expression recognition algorithm based on equal probability symbolization entropy

Fa Zheng, Bin Hu*, Xiangwei Zheng

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

摘要

Electroencephalogram (EEG) records brain activity using electrophysiological markers and is a comprehensive representation of the dynamic activity of human brain neurons. EEG can be used to study human facial expression recognition. In fact, entropy values of EEG can fully reflect changes in facial expressions. This paper improves the sample entropy and the permutation entropy by introducing equal probability symbolization and applies the equal probability symbolization entropy to facial expression recognition. The original permutation entropy, sample entropy and equal-probability symbolization entropy values are calculated for the three expressions of anger, fear and happiness. The results demonstrate that equal-probability symbolization entropy can distinguish human facial expressions clearly and accurately.

源语言英语
主期刊名Computer Supported Cooperative Work and Social Computing - 13th CCF Conference, ChineseCSCW 2018, Revised Selected Papers
编辑Xiaolan Xie, Yuqing Sun, Tun Lu, Hongfei Fan, Liping Gao
出版商Springer Verlag
469-477
页数9
ISBN(印刷版)9789811330438
DOI
出版状态已出版 - 2019
已对外发布
活动13th CCF Conference on Computer Supported Cooperative Work and Social Computing, ChineseCSCW 2018 - Guilin, 中国
期限: 18 8月 201819 8月 2018

出版系列

姓名Communications in Computer and Information Science
917
ISSN(印刷版)1865-0929

会议

会议13th CCF Conference on Computer Supported Cooperative Work and Social Computing, ChineseCSCW 2018
国家/地区中国
Guilin
时期18/08/1819/08/18

指纹

探究 'Facial expression recognition algorithm based on equal probability symbolization entropy' 的科研主题。它们共同构成独一无二的指纹。

引用此