Decomposition numbers for Hecke algebras of type G(r, p, n): The (ε, q)-separated case

Jun Hu*, Andrew Mathas

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

3 引用 (Scopus)

摘要

The paper studies the modular representation theory of the cyclotomic Hecke algebras of type G(r, p, n) with (ε, q)-separated parameters. We show that the decomposition numbers of these algebras are completely determined by the decomposition matrices of related cyclotomic Hecke algebras of type G(s, 1, m), where 1 ≤ s ≤ r and 1 ≤ m ≤ n. Furthermore, the proof gives an explicit algorithm for computing these decomposition numbers. Consequently, in principle, the decomposition matrices of these algebras are now known in characteristic zero.In proving these results, we develop a Specht module theory for these algebras, explicitly construct their simple modules and introduce and study analogues of the cyclotomic Schur algebras of type G(r, p, n) when the parameters are (ε, q)-separated.The main results of the paper rest upon two Morita equivalences: the first reduces the calculation of all decomposition numbers to the case of the l-splittable decomposition numbers and the second Morita equivalence allows us to compute these decomposition numbers using an analogue of the cyclotomic Schur algebras for the Hecke algebras of type G(r, p, n).

源语言英语
页(从-至)865-926
页数62
期刊Proceedings of the London Mathematical Society
104
5
DOI
出版状态已出版 - 5月 2012

指纹

探究 'Decomposition numbers for Hecke algebras of type G(r, p, n): The (ε, q)-separated case' 的科研主题。它们共同构成独一无二的指纹。

引用此