Comparative Study of Trajectory Tracking Control for Automated Vehicles via Model Predictive Control and Robust H-infinity State Feedback Control

Kai Yang, Xiaolin Tang*, Yechen Qin, Yanjun Huang, Hong Wang, Huayan Pu

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

67 引用 (Scopus)

摘要

A comparative study of model predictive control (MPC) schemes and robust H state feedback control (RSC) method for trajectory tracking is proposed in this paper. The main objective of this paper is to compare MPC and RSC controllers’ performance in tracking predefined trajectory under different scenarios. MPC controller is designed based on the simple longitudinal-yaw-lateral motions of a single-track vehicle with a linear tire, which is an approximation of the more realistic model of a vehicle with double-track motion with a non-linear tire mode. RSC is designed on the basis of the same method as adopted for the MPC controller to achieve a fair comparison. Then, three test cases are built in CarSim-Simulink joint platform. Specifically, the verification test is used to test the tracking accuracy of MPC and RSC controller under well road conditions. Besides, the double lane change test with low road adhesion is designed to find the maximum velocity that both controllers can carry out while guaranteeing stability. Furthermore, an extreme curve test is built where the road adhesion changes suddenly, in order to test the performance of both controllers under extreme conditions. Finally, the advantages and disadvantages of MPC and RSC under different scenarios are also discussed.

源语言英语
文章编号74
期刊Chinese Journal of Mechanical Engineering (English Edition)
34
1
DOI
出版状态已出版 - 12月 2021

指纹

探究 'Comparative Study of Trajectory Tracking Control for Automated Vehicles via Model Predictive Control and Robust H-infinity State Feedback Control' 的科研主题。它们共同构成独一无二的指纹。

引用此