Advancing Realistic Precipitation Nowcasting with a Spatiotemporal Transformer-Based Denoising Diffusion Model

Zewei Zhao, Xichao Dong*, Yupei Wang, Cheng Hu

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

18 引用 (Scopus)

摘要

Recent advances in deep learning (DL) have significantly improved the quality of precipitation nowcasting. Current approaches are either based on deterministic or generative models. Deterministic models perceive nowcasting as a spatiotemporal prediction task, relying on distance functions like L2-norm loss for training. While improving meteorological evaluation metrics, they inevitably produce blurry predictions with no reference value. In contrast, generative models aim to capture realistic precipitation distributions and generate nowcasting products by sampling within these distributions. However, designing a generative model that produces realistic samples satisfying meteorological evaluation indexes in real-time remains challenging, given the triple dilemma of generative learning: achieving high sample quality, mode coverage, and fast sampling simultaneously. Recently, diffusion models exhibit impressive sample quality but suffer from time-consuming sampling, severely hindering their application in nowcasting. Moreover, samples generated by the U-Net denoiser of the current denoising diffusion model are prone to yield poor meteorological evaluation metrics such as CSI. To this end, we propose a spatiotemporal transformer-based conditional diffusion model with a rapid diffusion strategy. Concretely, we incorporate an adversarial mapping-based rapid diffusion strategy to overcome the time-consuming sampling process for standard diffusion models, enabling timely nowcasting. In addition, a meticulously designed spatiotemporal transformer-based denoiser is incorporated into diffusion models, remedying the defects in U-Net denoisers by estimating diffusion scores and improving nowcasting skill scores. Case studies of typical weather events such as thunderstorms, as well as quantitative indicators, demonstrate the effectiveness of the proposed method in generating sharper and more precise precipitation forecasts while maintaining satisfied meteorological evaluation metrics.

源语言英语
文章编号4102115
页(从-至)1-15
页数15
期刊IEEE Transactions on Geoscience and Remote Sensing
62
DOI
出版状态已出版 - 2024

指纹

探究 'Advancing Realistic Precipitation Nowcasting with a Spatiotemporal Transformer-Based Denoising Diffusion Model' 的科研主题。它们共同构成独一无二的指纹。

引用此