跳到主要导航
跳到搜索
跳到主要内容
北京理工大学 首页
English
中文
首页
师资队伍
研究单位
科研成果
奖项
按专业知识、名称或附属进行搜索
查看 Scopus 资料
祁 兵兵
信息与电子学院
h-index
54
引用
4
H-指数
根据储存在 Pure 的刊物以及来自 Scopus 的引用文献数量计算
2020
2025
每年的科研成果
概览
指纹图谱
合作网络
科研成果
(14)
相似学者
(1)
指纹图谱
深入其中 Bingbing Qi 为活跃的研究主题。这些主题标签来自此人的成果。它们共同形成唯一的指纹。
分类
加权
按字母排序
Engineering
Direction-of-Arrival Estimation
100%
Signal-to-Noise Ratio
68%
Toeplitz Matrix
64%
Covariance Matrix
45%
Noise Suppression
27%
Simulation Result
25%
Performance Degradation
24%
Eigenvalue
21%
Correlation Matrix
21%
Image Quality Assessment
20%
Acoustic Field
20%
Regularization Parameter
20%
Subspace Method
20%
Side Scan Sonar
20%
Frequency Direction
20%
Chirp Signal
20%
Input Signal
20%
Beamforming
20%
Deconvolution
20%
Target Recognition
20%
Received Data
18%
Level Semantics
15%
Beamforming
15%
Frequency Domain
13%
Computational Complexity
13%
Array Response
11%
Experimental Result
11%
Degree of Freedom
10%
Noise Energy
10%
Row Vector
10%
Noise Subspace
10%
Computer Simulation
9%
Engineering
9%
Direction of Arrival
8%
Good Performance
8%
Selection Method
8%
Dimensionality
8%
Source Separation
6%
Complete Information
6%
Model Parameter
6%
Performance Loss
6%
Computational Load
6%
Deep Learning Method
6%
Angular Resolution
5%
Feature Extraction
5%
Conventional Method
5%
Linear Transformation
5%
Complexity Reduction
5%
Limitations
5%
Acoustic Source
5%
Computer Science
direction-of-arrival
80%
Noise-to-Signal Ratio
70%
Toeplitz Matrix
64%
Estimation Performance
32%
Correlation Matrix
21%
Covariance Matrix
20%
Smoothing Algorithm
20%
Frequency Direction
20%
reconstruction algorithm
20%
Image Quality Assessment
20%
super resolution
20%
Neural Network
20%
Recognition Algorithm
20%
Target Recognition
20%
Knowledge Distillation
20%
Frequency Point
16%
time-frequency distribution
13%
Frequency Domain
13%
Noise Suppression
11%
Performance Degradation
10%
Good Performance
10%
Higher Semantic Level
10%
Experimental Result
10%
Dimensionality Reduction
8%
Estimation Accuracy
6%
Source Separation
6%
Image Quality
5%
Feature Dimension
5%
Feature Selection
5%
Level Attribute
5%
Critical Aspect
5%
Semantic Feature
5%
Knowledge Transfer
5%
Deployment Model
5%
Model Compression
5%
binarization
5%
Computing Resource
5%
Performance Loss
5%
Generalization Performance
5%
Deep Learning Method
5%
Computational Load
5%