TY - GEN
T1 - WiCo
T2 - 32nd International Joint Conference on Artificial Intelligence, IJCAI 2023
AU - Cheng, Zesen
AU - Jin, Peng
AU - Li, Hao
AU - Li, Kehan
AU - Li, Siheng
AU - Ji, Xiangyang
AU - Liu, Chang
AU - Chen, Jie
N1 - Publisher Copyright:
© 2023 International Joint Conferences on Artificial Intelligence. All rights reserved.
PY - 2023
Y1 - 2023
N2 - The top-down and bottom-up methods are two mainstreams of referring segmentation, while both methods have their own intrinsic weaknesses. Top-down methods are chiefly disturbed by Polar Negative (PN) errors owing to the lack of fine-grained cross-modal alignment. Bottom-up methods are mainly perturbed by Inferior Positive (IP) errors due to the lack of prior object information. Nevertheless, we discover that two types of methods are highly complementary for restraining respective weaknesses but the direct average combination leads to harmful interference. In this context, we build Win-win Cooperation (WiCo) to exploit complementary nature of two types of methods on both interaction and integration aspects for achieving a win-win improvement. For the interaction aspect, Complementary Feature Interaction (CFI) provides fine-grained information to top-down branch and introduces prior object information to bottom-up branch for complementary feature enhancement. For the integration aspect, Gaussian Scoring Integration (GSI) models the gaussian performance distributions of two branches and weighted integrates results by sampling confident scores from the distributions. With our WiCo, several prominent top-down and bottom-up combinations achieve remarkable improvements on three common datasets with reasonable extra costs, which justifies effectiveness and generality of our method.
AB - The top-down and bottom-up methods are two mainstreams of referring segmentation, while both methods have their own intrinsic weaknesses. Top-down methods are chiefly disturbed by Polar Negative (PN) errors owing to the lack of fine-grained cross-modal alignment. Bottom-up methods are mainly perturbed by Inferior Positive (IP) errors due to the lack of prior object information. Nevertheless, we discover that two types of methods are highly complementary for restraining respective weaknesses but the direct average combination leads to harmful interference. In this context, we build Win-win Cooperation (WiCo) to exploit complementary nature of two types of methods on both interaction and integration aspects for achieving a win-win improvement. For the interaction aspect, Complementary Feature Interaction (CFI) provides fine-grained information to top-down branch and introduces prior object information to bottom-up branch for complementary feature enhancement. For the integration aspect, Gaussian Scoring Integration (GSI) models the gaussian performance distributions of two branches and weighted integrates results by sampling confident scores from the distributions. With our WiCo, several prominent top-down and bottom-up combinations achieve remarkable improvements on three common datasets with reasonable extra costs, which justifies effectiveness and generality of our method.
UR - http://www.scopus.com/inward/record.url?scp=85170384366&partnerID=8YFLogxK
U2 - 10.24963/ijcai.2023/71
DO - 10.24963/ijcai.2023/71
M3 - Conference contribution
AN - SCOPUS:85170384366
T3 - IJCAI International Joint Conference on Artificial Intelligence
SP - 636
EP - 644
BT - Proceedings of the 32nd International Joint Conference on Artificial Intelligence, IJCAI 2023
A2 - Elkind, Edith
PB - International Joint Conferences on Artificial Intelligence
Y2 - 19 August 2023 through 25 August 2023
ER -