Weighted-fusion-based representation classifiers for hyperspectral imagery

Bing Peng, Wei Li*, Xiaoming Xie, Qian Du, Kui Liu

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

16 Citations (Scopus)

Abstract

Spatial texture features have been demonstrated to be very useful for the recently-proposed representation-based classifiers, such as the sparse representation-based classifier (SRC) and nearest regularized subspace (NRS). In this work, a weighted residual-fusion-based strategy with multiple features is proposed for these classifiers. Multiple features include local binary patterns (LBP), Gabor features, and the original spectral signatures. In the proposed classification framework, representation residuals for a testing pixel from using each type of features are weighted to generate the final representation residual, and then the label of the testing pixel is determined according to the class yielding the minimum final residual. The motivation of this work is that different features represent pixels from different perspectives and their fusion in the residual domain can enhance the discriminative ability. Experimental results of several real hyperspectral image datasets demonstrate that the proposed residual-based fusion outperforms the original NRS, SRC, support vector machine (SVM) with LBP, and SVM with Gabor features, even in small-sample-size (SSS) situations.

Original languageEnglish
Pages (from-to)14806-14826
Number of pages21
JournalRemote Sensing
Volume7
Issue number11
DOIs
Publication statusPublished - 2015
Externally publishedYes

Keywords

  • Gabor features
  • Hyperspectral image classification
  • Local binary patterns (LBP)
  • Nearest regularized subspace (NRS)

Fingerprint

Dive into the research topics of 'Weighted-fusion-based representation classifiers for hyperspectral imagery'. Together they form a unique fingerprint.

Cite this