Weight-Adapted Convolution Neural Network for Facial Expression Recognition in Human-Robot Interaction

Min Wu, Wanjuan Su, Luefeng Chen*, Zhentao Liu, Weihua Cao, Kaoru Hirota

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

66 Citations (Scopus)

Abstract

The weight-adapted convolution neural network (WACNN) is proposed to extract discriminative expression representations for recognizing facial expression. It aims to make good use of the convolution neural network's (CNN's) potential performance in avoiding local optima and speeding up convergence by the hybrid genetic algorithm (HGA) with optimal initial population, in such a way that it realizes deep and global emotion understanding in human-robot interaction. Moreover, the idea of novelty search is introduced to solve the deception problem in the HGA, which can expend the search space to help genetic algorithm jump out of local optimum and optimize large-scale parameters. In the proposal, the facial expression image preprocessing is conducted first, then the low-level expression features are extracted by using a principal component analysis. Finally, the high-level expression semantic features are extracted and recognized by WACNN which is optimized by HGA. In order to evaluate the effectiveness of WACNN, experiments on JAFFE, CK+, and static facial expressions in the wild 2.0 databases are carried out by using {k} -fold cross validation, and experimental results show the recognition accuracies of the proposal are superior to that of the state-of-the-art, such as local directional ternary pattern and weighted mixture deep neural network (DNN), which aim to extract discriminative and are the DNN-based methods. Moreover, recognition accuracies of the proposal are also higher than the deep CNN without HGA, which indicates that the proposal has better global optimization ability. Meanwhile, preliminary application experiments are also carried out by using the proposed algorithm on the emotional social robot system, where nine volunteers and two-wheeled robots experience the scenario of emotion understanding. Application results indicate that the wheeled robots can recognize basic expressions, such as happy, surprise, and so on.

Original languageEnglish
Article number8663434
Pages (from-to)1473-1484
Number of pages12
JournalIEEE Transactions on Systems, Man, and Cybernetics: Systems
Volume51
Issue number3
DOIs
Publication statusPublished - Mar 2021
Externally publishedYes

Keywords

  • Accelerated gradient descent (AGD)
  • convolution neural network (CNN)
  • facial expression recognition (FER)
  • genetic algorithm (GA)

Fingerprint

Dive into the research topics of 'Weight-Adapted Convolution Neural Network for Facial Expression Recognition in Human-Robot Interaction'. Together they form a unique fingerprint.

Cite this