Wasserstein coupled graph learning for cross-modal retrieval

Yun Wang, Tong Zhang, Xueya Zhang, Zhen Cui*, Yuge Huang, Pengcheng Shen, Shaoxin Li, Jian Yang

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

21 Citations (Scopus)

Abstract

Graphs play an important role in cross-modal image-text understanding as they characterize the intrinsic structure which is robust and crucial for the measurement of cross-modal similarity. In this work, we propose a Wasserstein Coupled Graph Learning (WCGL) method to deal with the cross-modal retrieval task. First, graphs are constructed according to two input cross-modal samples separately, and passed through the corresponding graph encoders to extract robust features. Then, a Wasserstein coupled dictionary, containing multiple pairs of counterpart graph keys with each key corresponding to one modality, is constructed for further feature learning. Based on this dictionary, the input graphs can be transformed into the dictionary space to facilitate the similarity measurement through a Wasserstein Graph Embedding (WGE) process. The WGE could capture the graph correlation between the input and each corresponding key through optimal transport, and hence well characterize the inter-graph structural relationship. To further achieve discriminant graph learning, we specifically define a Wasserstein discriminant loss on the coupled graph keys to make the intra-class (counterpart) keys more compact and inter-class (non-counterpart) keys more dispersed, which further promotes the final cross-modal retrieval task. Experimental results demonstrate the effectiveness and state-of-the-art performance.

Original languageEnglish
Title of host publicationProceedings - 2021 IEEE/CVF International Conference on Computer Vision, ICCV 2021
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1793-1802
Number of pages10
ISBN (Electronic)9781665428125
DOIs
Publication statusPublished - 2021
Externally publishedYes
Event18th IEEE/CVF International Conference on Computer Vision, ICCV 2021 - Virtual, Online, Canada
Duration: 11 Oct 202117 Oct 2021

Publication series

NameProceedings of the IEEE International Conference on Computer Vision
ISSN (Print)1550-5499

Conference

Conference18th IEEE/CVF International Conference on Computer Vision, ICCV 2021
Country/TerritoryCanada
CityVirtual, Online
Period11/10/2117/10/21

Fingerprint

Dive into the research topics of 'Wasserstein coupled graph learning for cross-modal retrieval'. Together they form a unique fingerprint.

Cite this