TY - JOUR
T1 - Wall turbulence perturbed by a bump with organized small-scale roughness
T2 - flow statistics
AU - Hussain, Fazle
AU - García, Edgardo
AU - Yao, Jie
AU - Stout, Eric
N1 - Publisher Copyright:
© The Author(s), 2024. Published by Cambridge University Press.
PY - 2024/7/29
Y1 - 2024/7/29
N2 - Turbulent boundary layers (TBLs) over surface perturbations like bumps with roughness – notably altering heat and mass transfer, drag, etc. – are prevalent in nature (mountains, dunes, etc.) and technology. We study a channel flow with a transverse bump on one wall superimposed with small-scale longitudinal grooves via direct numerical simulation (DNS) of incompressible flow. Turbulence statistics and dynamics are compared between grooved wall (GW) and smooth wall (SW) bumps. Streamwise spinning jets emanating from the crests’ corners alter the flow structure within the separation bubble (SB), extending the SB length by 30 % over that for SW, and have lingering effects far downstream. Grooves decrease skin friction but increase the bump’s form drag by 25 %. In GW, the peaks of turbulence intensity and production decrease by 20 % and shift downstream, compared with SW. Three regions of negative production, found upstream as well as downstream of the bump, are explained in terms of two separate mechanisms: normal and shear productions. Separation upstream of the bump occurs always for GW, but intermittently for SW. Within the downstream SB, counter-rotating minibubbles form intermittently for SW but always for GW. Interestingly, a minibubble causes streamwise vorticity reversal of the upstream moving secondary flow around each crest corner. The wall pressure in GW is invariant in the spanwise direction and is explained in terms of its non-local nature and its connection with outer structures. The grooved bump unearths rich TBL flow physics – upstream separation, dynamics of the downstream minibubble, altered reattachment dynamics and negative production.
AB - Turbulent boundary layers (TBLs) over surface perturbations like bumps with roughness – notably altering heat and mass transfer, drag, etc. – are prevalent in nature (mountains, dunes, etc.) and technology. We study a channel flow with a transverse bump on one wall superimposed with small-scale longitudinal grooves via direct numerical simulation (DNS) of incompressible flow. Turbulence statistics and dynamics are compared between grooved wall (GW) and smooth wall (SW) bumps. Streamwise spinning jets emanating from the crests’ corners alter the flow structure within the separation bubble (SB), extending the SB length by 30 % over that for SW, and have lingering effects far downstream. Grooves decrease skin friction but increase the bump’s form drag by 25 %. In GW, the peaks of turbulence intensity and production decrease by 20 % and shift downstream, compared with SW. Three regions of negative production, found upstream as well as downstream of the bump, are explained in terms of two separate mechanisms: normal and shear productions. Separation upstream of the bump occurs always for GW, but intermittently for SW. Within the downstream SB, counter-rotating minibubbles form intermittently for SW but always for GW. Interestingly, a minibubble causes streamwise vorticity reversal of the upstream moving secondary flow around each crest corner. The wall pressure in GW is invariant in the spanwise direction and is explained in terms of its non-local nature and its connection with outer structures. The grooved bump unearths rich TBL flow physics – upstream separation, dynamics of the downstream minibubble, altered reattachment dynamics and negative production.
KW - turbulent boundary layers, boundary layer separation
UR - http://www.scopus.com/inward/record.url?scp=85201401822&partnerID=8YFLogxK
U2 - 10.1017/jfm.2024.465
DO - 10.1017/jfm.2024.465
M3 - Article
AN - SCOPUS:85201401822
SN - 0022-1120
VL - 989
JO - Journal of Fluid Mechanics
JF - Journal of Fluid Mechanics
M1 - A13
ER -