VLMimic: Vision Language Models are Visual Imitation Learner for Fine-grained Actions

Guangyan Chen, Meiling Wang, Te Cui, Yao Mu, Haoyang Lu, Tianxing Zhou, Zicai Peng, Mengxiao Hu, Haizhou Li, Li Yuan, Yi Yang*, Yufeng Yue*

*Corresponding author for this work

Research output: Contribution to journalConference articlepeer-review

Abstract

Visual imitation learning (VIL) provides an efficient and intuitive strategy for robotic systems to acquire novel skills. Recent advancements in Vision Language Models (VLMs) have demonstrated remarkable performance in vision and language reasoning capabilities for VIL tasks. Despite the progress, current VIL methods naively employ VLMs to learn high-level plans from human videos, relying on pre-defined motion primitives for executing physical interactions, which remains a major bottleneck. In this work, we present VLMimic, a novel paradigm that harnesses VLMs to directly learn even fine-grained action levels, only given a limited number of human videos. Specifically, VLMimic first grounds object-centric movements from human videos, and learns skills using hierarchical constraint representations, facilitating the derivation of skills with fine-grained action levels from limited human videos. These skills are refined and updated through an iterative comparison strategy, enabling efficient adaptation to unseen environments. Our extensive experiments exhibit that our VLMimic, using only 5 human videos, yields significant improvements of over 27% and 21% in RLBench and real-world manipulation tasks, and surpasses baselines by over 37% in long-horizon tasks. Code and videos are available at our home page.

Original languageEnglish
JournalAdvances in Neural Information Processing Systems
Volume37
Publication statusPublished - 2024
Event38th Conference on Neural Information Processing Systems, NeurIPS 2024 - Vancouver, Canada
Duration: 9 Dec 202415 Dec 2024

Cite this