Video Anomaly Detection via Sequentially Learning Multiple Pretext Tasks

Chenrui Shi, Che Sun*, Yuwei Wu, Yunde Jia

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

20 Citations (Scopus)

Abstract

Learning multiple pretext tasks is a popular approach to tackle the nonalignment problem in unsupervised video anomaly detection. However, the conventional learning method of simultaneously learning multiple pretext tasks, is prone to sub-optimal solutions, incurring sharp performance drops. In this paper, we propose to sequentially learn multiple pretext tasks according to their difficulties in an ascending manner to improve the performance of anomaly detection. The core idea is to relax the learning objective by starting with easy pretext tasks in the early stage and gradually refine it by involving more challenging pretext tasks later on. In this way, our method is able to reduce the difficulties of learning and avoid converging to sub-optimal solutions. Specifically, we design a tailored sequential learning order for three widely-used pretext tasks. It starts with frame prediction task, then moves on to frame reconstruction task and last ends with frame-order classification task. We further introduce a new contrastive loss which makes the learned representations of normality more discriminative by pushing normal and pseudo-abnormal samples apart. Extensive experiments on three datasets demonstrate the effectiveness of our method.

Original languageEnglish
Title of host publicationProceedings - 2023 IEEE/CVF International Conference on Computer Vision, ICCV 2023
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages10296-10306
Number of pages11
ISBN (Electronic)9798350307184
DOIs
Publication statusPublished - 2023
Event2023 IEEE/CVF International Conference on Computer Vision, ICCV 2023 - Paris, France
Duration: 2 Oct 20236 Oct 2023

Publication series

NameProceedings of the IEEE International Conference on Computer Vision
ISSN (Print)1550-5499

Conference

Conference2023 IEEE/CVF International Conference on Computer Vision, ICCV 2023
Country/TerritoryFrance
CityParis
Period2/10/236/10/23

Fingerprint

Dive into the research topics of 'Video Anomaly Detection via Sequentially Learning Multiple Pretext Tasks'. Together they form a unique fingerprint.

Cite this