Unsupervised Deraining: Where Contrastive Learning Meets Self-similarity

Yuntong Ye, Changfeng Yu, Yi Chang*, Lin Zhu, Xi Le Zhao, Luxin Yan, Yonghong Tian

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

48 Citations (Scopus)

Abstract

Image deraining is a typical low-level image restoration task, which aims at decomposing the rainy image into two distinguishable layers: clean image layer and rain layer. Most of the existing learning-based deraining methods are supervisedly trained on synthetic rainy-clean pairs. The domain gap between the synthetic and real rains makes them less generalized to different real rainy scenes. Moreover, the existing methods mainly utilize the property of the two layers independently, while few of them have considered the mutually exclusive relationship between the two layers. In this work, we propose a novel non-local contrastive learning (NLCL) method for unsupervised image deraining. Consequently, we not only utilize the intrinsic self-similarity property within samples, but also the mutually exclusive property between the two layers, so as to better differ the rain layer from the clean image. Specifically, the non-local self-similarity image layer patches as the positives are pulled together and similar rain layer patches as the negatives are pushed away. Thus the similar positive/negative samples that are close in the original space benefit us to enrich more discriminative representation. Apart from the self-similarity sampling strategy, we analyze how to choose an appropriate feature encoder in NLCL. Extensive experiments on different real rainy datasets demonstrate that the proposed method obtains state-of-the-art performance in real deraining.

Original languageEnglish
Title of host publicationProceedings - 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022
PublisherIEEE Computer Society
Pages5811-5820
Number of pages10
ISBN (Electronic)9781665469463
DOIs
Publication statusPublished - 2022
Externally publishedYes
Event2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022 - New Orleans, United States
Duration: 19 Jun 202224 Jun 2022

Publication series

NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
Volume2022-June
ISSN (Print)1063-6919

Conference

Conference2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022
Country/TerritoryUnited States
CityNew Orleans
Period19/06/2224/06/22

Keywords

  • Low-level vision

Fingerprint

Dive into the research topics of 'Unsupervised Deraining: Where Contrastive Learning Meets Self-similarity'. Together they form a unique fingerprint.

Cite this